Skip to main content
Log in

Comparative Evaluation of Three Supplements for Helicobacter pylori Growth in Liquid Culture

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Helicobacter pylori, a microaerophilic fastidious bacterium, has been cultured on various plating and broth media since its discovery. Although the agar media can be sufficient for the identification, typing, and antibiotic resistance studies, no secretory antigen of H. pylori can be evaluated in such media. Thus, satisfactory growth of H. pylori in liquid culture which is needed for analysis of secretory proteins without the presence of interfering agents is in demand. We assessed the impact of β-cyclodextrin, Fetal Bovine Serum (FBS), and charcoal as supplements for H. pylori growth. Furthermore, we aimed to identify the most favorable supplement that supports the secretion of the dominant secretory protein, vacuolating cytotoxin (VacA). Five clinical strains were cultured on broth media and the growth, viability, morphology, and protein content of each strain were determined. Our results revealed that β-cyclodextrin supports the growth rate, viability, and cell lysate protein content to the extent similar to FBS. Application of β-cyclodextrin is found to postpone spiral to coccoid conversion up to 72 h of incubation. Although FBS supports a higher VacA protein content, presence of interfering macromolecules in FBS questions its utility particularly for purposes of studying extra cellular proteins such as VacA. This study recommends further application of β-cyclodextrin as a culture supplement with the potential capacity in neutralizing toxic compounds and flourishing the secretion of H. pylori proteins without addition of interfering proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peek RMJ, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2:28–37

    Article  CAS  PubMed  Google Scholar 

  2. Shirin H, Leja M, Niv Y (2008) Helicobacter pylori and non-malignant diseases. Helicobacter 13:23–27

    Article  PubMed  Google Scholar 

  3. Piccolomini R, Di Bonaventura G, Festi D, Catamo G, Laterza F, Neri M (1997) Optimal combination of media for primary isolation of Helicobacter pylori from gastric biopsy specimens. J Clin Microbiol 35:1541–1544

    CAS  PubMed  Google Scholar 

  4. Schraw W, McClain MS, Cover TL (1999) Kinetics and mechanisms of extracellular protein release by Helicobacter pylori. Infect Immun 67:5247–5252

    CAS  PubMed  Google Scholar 

  5. Sewald X, Fischer W, Haas R (2008) Sticky socks: Helicobacter pylori VacA takes shape. Trends Microbiol 16:89–92

    Article  CAS  PubMed  Google Scholar 

  6. Sainsus N, Cattori V, Lepadatu C, Hofmann-Lehmann R (2008) Liquid culture medium for the rapid cultivation of Helicobacter pylori from biopsy specimens. Eur J Clin Microbiol Infect Dis 27:1209–1217

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson TH, Castillo A, Lucia LM, Acuff GR (2000) Growth of Helicobacter pylori in various liquid and plating media. Lett Appl Microbiol 30:192–196

    Article  CAS  PubMed  Google Scholar 

  8. Kitsos CM, Stadtlander CT (1998) Helicobacter pylori in liquid culture: evaluation of growth rates and ultrastructure. Curr Microbiol 37:88–93

    Article  CAS  PubMed  Google Scholar 

  9. Jiang X, Doyle MP (2000) Growth supplements for Helicobacter pylori. J Clin Microbiol 38:1984–1987

    CAS  PubMed  Google Scholar 

  10. Labigne A, Cussac V, Courcoux P (1991) Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol 173:1920–1931

    CAS  PubMed  Google Scholar 

  11. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 16:1311–1315

    Article  Google Scholar 

  12. Walsh EJ, Moran AP (1997) Influence of medium composition on the growth and antigen expression of Helicobacter pylori. J Appl Microbiol 83:67–75

    Article  CAS  PubMed  Google Scholar 

  13. Zheng X, Baker H, Hancock WS, Fawaz F, McCaman M, Pungor EJ (2006) Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog 22:1294–1300

    Article  CAS  PubMed  Google Scholar 

  14. Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20:275–281

    PubMed  Google Scholar 

  15. Shahamat M, Mai UE, Paszko-Kolva C, Yamamoto H, Colwell RR (1991) Evaluation of liquid media for growth of Helicobacter pylori. J Clin Microbiol 29:2835–2837

    CAS  PubMed  Google Scholar 

  16. Erickson GA, Bolin SR, Landgraf JG (1991) Viral contamination of fetal bovine serum used for tissue culture: risks and concerns. Dev Biol Stand 75:173–175

    CAS  PubMed  Google Scholar 

  17. Plavsic MZ, Prodafikas G (2001) Evaluation of a new sandwich enzyme-linked immunosorbent assay for detection of bovine viral diarrhea virus in unprocessed fetal bovine serum. J Vet Diagn Invest 13:261–262

    CAS  PubMed  Google Scholar 

  18. Woods RD, Kunkle RA, Ridpath JE, Bolin SR (1999) Bovine viral diarrhea virus isolated from fetal calf serum enhances pathogenicity of attenuated transmissible gastroenteritis virus in neonatal pigs. J Vet Diagn Invest 11:400–407

    CAS  PubMed  Google Scholar 

  19. Zabal O, Kobrak AL, Lager IA, Schudel AA, Weber EL (2000) Contamination of bovine fetal serum with bovine viral diarrhea virus. Rev Argent Microbiol 32:27–32

    CAS  PubMed  Google Scholar 

  20. Kimura T, Wada A, Nakayama M, Ogushi K, Nishi Y, De Guzman BB, Moss J, Hirayama T (2003) High molecular weight factor in FCS inhibits Helicobacter pylori VacA-binding to its receptor, RPTPbeta, on AZ-521. Microbiol Immunol 47:105–107

    CAS  PubMed  Google Scholar 

  21. Olivieri R, Bugnoli M, Armellini D, Bianciardi S, Rappuoli R, Bayeli PF, Abate L, Esposito E, de Gregorio L, Aziz J et al (1993) Growth of Helicobacter pylori in media containing cyclodextrins. J Clin Microbiol 31:160–162

    CAS  PubMed  Google Scholar 

  22. McKenzie RC, Harley CB, Matic S, Sauder DN (1990) Fetal bovine serum contains an inhibitor of interleukin-1. J Immunol Methods 133:99–105

    Article  CAS  PubMed  Google Scholar 

  23. Mortell KH, Marmorstein AD, Cramer EB (1993) Fetal bovine serum and other sera used in tissue culture increase epithelial permeability. In Vitro Cell Dev Biol 29A:235–238

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Wang M, Wang F, Gu Z, Du G, Wu J, Chen J (2007) gamma-cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 77(2):245–255

    Article  CAS  PubMed  Google Scholar 

  25. Taneera J, Moran AP, Hynes SO, Nilsson HO, Al-Soud W, Wadstrom T (2002) Influence of activated charcoal, porcine gastric mucin and beta-cyclodextrin on the morphology and growth of intestinal and gastric Helicobacter spp. Microbiology 148:667–684

    Google Scholar 

  26. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035

    Article  CAS  PubMed  Google Scholar 

  27. Bond GR (2002) The role of activated charcoal and gastric emptying in gastrointestinal decontamination: a state-of-the-art. Ann Emerg Med 39:273–286

    Article  PubMed  Google Scholar 

  28. Lapus RM (2007) Activated charcoal for pediatric poisonings: the universal antidote? Curr Opin Pediatr 19:216–222

    Article  PubMed  Google Scholar 

  29. Alvarez B, Guijarro JA (2007) Recovery of Flavobacterium psychrophilum viable cells using a charcoal-based solid medium. Lett Appl Microbiol 44:569–572

    Article  CAS  PubMed  Google Scholar 

  30. Daneshvar MI, Hollis DG, Weyant RS, Jordan JG, MacGregor JP, Morey RE, Whitney AM, Brenner DJ, Steigerwalt AG, Helsel LO, Raney PM, Patel JB, Levett PN, Brown JM (2004) Identification of some charcoal-black-pigmented CDC fermentative coryneform group 4 isolates as Rothia dentocariosa and some as Corynebacterium aurimucosum. J Clin Microbiol 42:4189–4198

    Article  CAS  PubMed  Google Scholar 

  31. Dougherty MJ, Spach DH, Larson AM, Hooton TM, Coyle MB (1996) Evaluation of an extended blood culture protocol to isolate fastidious organisms from patients with AIDS. J Clin Microbiol 34:2444–2447

    CAS  PubMed  Google Scholar 

  32. Ermolaeva S, Belyi Y, Tartakovskii I (1999) Characteristics of induction of virulence factor expression by activated charcoal in Listeria monocytogenes. FEMS Microbiol Lett 174:137–141

    Article  CAS  PubMed  Google Scholar 

  33. Marchini A, d’Apolito M, Massari P, Atzeni M, Copass M, Olivieri R (1995) Cyclodextrins for growth of Helicobacter pylori and production of vacuolating cytotoxin. Arch Microbiol 164:290–293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douraghi, M., Saberi Kashani, S., Zeraati, H. et al. Comparative Evaluation of Three Supplements for Helicobacter pylori Growth in Liquid Culture. Curr Microbiol 60, 254–262 (2010). https://doi.org/10.1007/s00284-009-9534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9534-4

Keywords

Navigation