Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688
CAS
PubMed
PubMed Central
Article
Google Scholar
Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colas E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Kramer-Albers EM, Laitinen S, Lasser C, Lener T, Ligeti E, Line A, Lipps G, Llorente A, Lotvall J, Mancek-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-'t Hoen EN, Nyman TA, O'Driscoll L, Olivan M, Oliveira C, Pallinger E, Del Portillo HA, Reventos J, Rigau M, Rohde E, Sammar M, Sanchez-Madrid F, Santarem N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066
PubMed
Article
Google Scholar
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113:E968–E977
CAS
PubMed
PubMed Central
Article
Google Scholar
Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, Mulholland D, Rotinen M, Hager MH, Insabato L, Moses MA, Demichelis F, Lisanti MP, Wu H, Klagsbrun M, Bhowmick NA, Rubin MA, D'Souza-Schorey C, Freeman MR (2012) Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 181:1573–1584
PubMed
PubMed Central
Article
CAS
Google Scholar
Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913
PubMed
Article
Google Scholar
Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610
PubMed
PubMed Central
Article
Google Scholar
Jørgensen MM, Bæk R, Varming K (2015) Potentials and capabilities of the extracellular vesicle (EV) array. J Ext Vesicles 4:26048
Article
Google Scholar
Cvjetkovic A, Jang SC, Konečná B, Höög JL, Sihlbom C, Lässer C, Lötvall J (2016) Detailed analysis of protein topology of extracellular vesicles—evidence of unconventional membrane protein orientation. Sci Rep 6:36338
CAS
PubMed
PubMed Central
Article
Google Scholar
Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ (2013) Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics 12:587–598
CAS
PubMed
Article
Google Scholar
Radons J, Multhoff G (2005) Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev 11:17–33
PubMed
Google Scholar
Ghosh A, Davey M, Chute IC, Griffiths SG, Lewis S, Chacko S, Barnett D, Crapoulet N, Fournier S, Joy A (2014) Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One 9:e110443
PubMed
PubMed Central
Article
CAS
Google Scholar
Griffiths SG, Lewis SE (2015) Polypeptides with affinity for heat shock proteins (HSPs) and HSP associated complexes (HACS) and their use in diagnosis and therapy
Griffiths SG, Cormier MT, Clayton A, Doucette AA (2017) Differential proteome analysis of extracellular vesicles from breast cancer cell lines by chaperone affinity enrichment. Proteomes 5:25
PubMed Central
Article
CAS
Google Scholar
Balaj L, Atai NA, Chen W, Mu D, Tannous BA, Breakefield XO, Skog J, Maguire CA (2015) Heparin affinity purification of extracellular vesicles. Sci Rep 5:10266
CAS
PubMed
PubMed Central
Article
Google Scholar
Tietjen GT, Gong Z, Chen CH, Vargas E, Crooks JE, Cao KD, Heffern CT, Henderson JM, Meron M, Lin B, Roux B, Schlossman ML, Steck TL, Lee KY, Adams EJ (2014) Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4. Proc Natl Acad Sci USA 111(15):E1463–E1E72
CAS
PubMed
Article
PubMed Central
Google Scholar
Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N, Naruse K, Sadamura Y, Hanayama R (2016) A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep 6:33935
CAS
PubMed
PubMed Central
Article
Google Scholar
Belov L, Matic KJ, Hallal S, Best OG, Mulligan SP, Christopherson RI (2016) Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Ext Vesicles 5:25355
Article
CAS
Google Scholar
Grasso L, Wyss R, Weidenauer L, Thampi A, Demurtas D, Prudent M, Lion N, Vogel H (2015) Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem 407:5425–5432
CAS
PubMed
PubMed Central
Article
Google Scholar
Castillo J, Bernard V, San Lucas F, Allenson K, Capello M, Kim D, Gascoyne P, Mulu F, Stephens B, Huang J (2017) Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol 29:223–229
Article
PubMed Central
Google Scholar
Koh E, Lee EJ, Nam G-H, Hong Y, Cho E, Yang Y, Kim I-S (2017) Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials 121:121–129
CAS
PubMed
Article
Google Scholar
Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Ext Vesicles 3:24641
Article
CAS
Google Scholar
French KC, Antonyak MA, Cerione RA (2017) Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Presented at Seminars in cell & developmental biology
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172
CAS
PubMed
Article
Google Scholar
Martínez-Lorenzo MJ, Anel A, Gamen S, Monleón I, Lasierra P, Larrad L, Piñeiro A, Alava MA, Naval J (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163:1274–1281
PubMed
Google Scholar
Monleón I, Martínez-Lorenzo MJ, Monteagudo L, Lasierra P, Taulés M, Iturralde M, Piñeiro A, Larrad L, Alava MA, Naval J, Anel A (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167(12):6736–6744
PubMed
Article
Google Scholar
Rivoltini L, Chiodoni C, Squarcina P, Tortoreto M, Villa A, Vergani B, Bürdek M, Botti L, Arioli I, Cova A (2016) TNF-related apoptosis-inducing ligand (TRAIL)—armed exosomes deliver proapoptotic signals to tumor site. Clin Cancer Res 22:3499–3512
CAS
PubMed
Article
Google Scholar
Theodoraki M-N, Yerneni S, Hoffmann TK, Gooding WE, Whiteside TL (2017) Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin Cancer Res pp. clincanres 2664.017
He M, Kubo H, Morimoto K, Fujino N, Suzuki T, Takahasi T, Yamada M, Yamaya M, Maekawa T, Yamamoto Y (2011) Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep 12:358–364
CAS
PubMed
PubMed Central
Article
Google Scholar
Park D, Tosello-Trampont A-C, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434
CAS
PubMed
Article
Google Scholar
Park SY, Jung MY, Kim HJ, Lee SJ, Kim SY, Lee BH, Kwon TH, Park RW, Kim IS (2008) Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 15(1):192–201
CAS
PubMed
Article
Google Scholar
Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187
CAS
PubMed
Article
Google Scholar
Véron P, Segura E, Sugano G, Amigorena S, Théry C (2005) Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cell Mol Dis 35:81–88
Article
CAS
Google Scholar
Oshima K, Aoki N, Kato T, Kitajima K, Matsuda T (2002) Secretion of a peripheral membrane protein, MFG-E8, as a complex with membrane vesicles. FEBS J 269:1209–1218
CAS
Google Scholar
Graham DK, DeRyckere D, Davies KD, Earp HS (2014) The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 14:769–785
CAS
PubMed
Article
Google Scholar
Zakharova L, Svetlova M, Fomina AF (2007) T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 212:174–181
CAS
PubMed
Article
Google Scholar
Wei X, Liu C, Wang H, Wang L, Xiao F, Guo Z, Zhang H (2016) Surface phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS One 11:e0147360
PubMed
PubMed Central
Article
CAS
Google Scholar
Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM (2015) Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 6:7164
CAS
PubMed
Article
Google Scholar
Rieu S, Géminard C, Rabesandratana H, Sainte-Marie J, Vidal M (2000) Exosomes released during reticulocyte maturation bind to fibronectin via integrin α4β1. FEBS J 267:583–590
CAS
Google Scholar
Purushothaman A, Bandari SK, Liu J, Mobley JA, Brown EE, Sanderson RD (2016) Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J Biol Chem 291:1652–1663
CAS
PubMed
Article
Google Scholar
Atay S, Gercel-Taylor C, Taylor DD (2011) Human trophoblast-derived Exosomal fibronectin induces pro-inflammatory Il-1β production by macrophages. Am J Reprod Immunol 66:259–269
CAS
PubMed
Article
Google Scholar
Németh A, Orgovan N, Sódar BW, Osteikoetxea X, Pálóczi K, Szabó-Taylor KÉ, Vukman KV, Kittel Á, Turiák L, Wiener Z (2017) Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep 7:8202
PubMed
PubMed Central
Article
CAS
Google Scholar
Moon P-G, Lee J-E, Cho Y-E, Lee SJ, Chae YS, Jung JH, Kim I-S, Park HY, Baek M-C (2016) Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 7:40189
PubMed
PubMed Central
Article
Google Scholar
Christianson HC, Svensson KJ, van Kuppevelt TH, Li J-P, Belting M (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci 110:17380–17385
CAS
PubMed
Article
PubMed Central
Google Scholar
Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M (2017) A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 393:86–93
CAS
PubMed
PubMed Central
Article
Google Scholar
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182
CAS
PubMed
PubMed Central
Article
Google Scholar
Liang K, Liu F, Fan J, Sun D, Liu C, Lyon CJ, Bernard DW, Li Y, Yokoi K, Katz MH (2017) Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng 1:0021
PubMed
PubMed Central
Article
CAS
Google Scholar
Arasu UT, Kärnä R, Härkönen K, Oikari S, Koistinen A, Kröger H, Qu C, Lammi MJ, Rilla K (2017) Human mesenchymal stem cells secrete hyaluronan-coated extracellular vesicles. Matrix Biol 64:54–68
CAS
PubMed
Article
Google Scholar
Nakamura K, Sawada K, Kinose Y, Yoshimura A, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige K-I, Kurachi H (2016) Exosomes promote ovarian cancer cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol Cancer Res pp. molcanres 0191.2016
Wang M, Ji S, Shao G, Zhang J, Zhao K, Wang Z, Wu A (2017) Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clin Transl Oncol 1–6
Paolillo M, Schinelli S (2017) Integrins and exosomes, a dangerous liaison in cancer progression. Cancers 9:95
PubMed Central
Article
CAS
Google Scholar
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335
CAS
PubMed
PubMed Central
Article
Google Scholar
Buzas EI, György B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10(6):356–364
CAS
PubMed
Article
Google Scholar
Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, Albert A, Shnayder R, Gobezie R, Nigrovic PA (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235–249
CAS
PubMed
Article
Google Scholar
Perez-Hernandez J, Redon J, Cortes R (2017) Extracellular vesicles as therapeutic agents in systemic lupus erythematosus. Int J Mol Sci 18:717
PubMed Central
Article
CAS
Google Scholar
Fortin PR, Cloutier N, Bissonnette V, Aghdassi E, Eder L, Simonyan D, Laflamme N, Boilard E (2016) Distinct subtypes of microparticle-containing immune complexes are associated with disease activity, damage, and carotid intima-media thickness in systemic lupus erythematosus. J Rheumatol pp. jrheum. 160050
Sisirak V, Sally B, D’Agati V, Martinez-Ortiz W, Özçakar ZB, David J, Rashidfarrokhi A, Yeste A, Panea C, Chida AS (2016) Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166:88–101
CAS
PubMed
PubMed Central
Article
Google Scholar
Yin W, Ghebrehiwet B, Peerschke EI (2008) Expression of complement components and inhibitors on platelet microparticles. Platelets 19:225–233
CAS
PubMed
PubMed Central
Article
Google Scholar
Winberg LK, Nielsen CH, Jacobsen S (2017) Surface complement C3 fragments and cellular binding of microparticles in patients with SLE. Lupus Sci Med 4(1):e000193
PubMed
PubMed Central
Article
Google Scholar
Karpman D, Ståhl A-L, Arvidsson I (2017) Extracellular vesicles in renal disease. Nat Rev Nephrol 13:545–562
CAS
PubMed
Article
Google Scholar
Carrillo-Conde BR, Ramer-Tait AE, Wannemuehler MJ, Narasimhan B (2012) Chemistry-dependent adsorption of serum proteins onto polyanhydride microparticles differentially influences dendritic cell uptake and activation. Acta Biomater 8:3618–3628
CAS
PubMed
Article
Google Scholar
Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288
CAS
PubMed
Article
Google Scholar
Zwicker JI, Liebman HA, Neuberg D, Lacroix R, Bauer KA, Furie BC, Furie B (2009) Tumor-derived tissue factor–bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840
CAS
PubMed
PubMed Central
Article
Google Scholar
Owens AP, Mackman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108:1284–1297
CAS
PubMed
PubMed Central
Article
Google Scholar
Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet J-M (1996) Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 87:1409–1415
CAS
PubMed
Article
Google Scholar
Hisada Y, Auriemma AC, Alexander W, Ay C, Mackman N (2017) Detection of tissue factor-positive extracellular vesicles by laser scanning confocal microscopy. Thromb Res 150:65–72
CAS
PubMed
Article
Google Scholar
Cointe S, Lacroix R, Dignat-George F (2017) Platelet-derived microparticles. In: Platelets in thrombotic and non-thrombotic disorders. Springer, p 379–92
Lacroix R, Dubois C, Leroyer A, Sabatier F, Dignat-George F (2013) Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost 11:24–35
PubMed
Article
Google Scholar
Van Der Meijden P, Van Schilfgaarde M, Van Oerle R, Renne T, Ten Cate H, Spronk H (2012) Platelet-and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 10:1355–1362
Article
CAS
Google Scholar
Gilbert GE, Sims PJ, Wiedmer T, Furie B, Furie BC, Shattil SJ (1991) Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem 266(26):17261–17268
CAS
PubMed
Article
Google Scholar
Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil S (1989) Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem 264:17049–17057
CAS
PubMed
Article
Google Scholar
Hoffman M, Monroe DM, Roberts HR (1992) Coagulation factor IXa binding to activated platelets and platelet-derived microparticles: a flow cytometric study. Thromb Haemost 68:74–78
CAS
PubMed
Article
Google Scholar
Thom SR, Bennett M, Banham ND, Chin W, Blake DF, Rosen A, Pollock NW, Madden D, Barak O, Marroni A (2015) Association of microparticles and neutrophil activation with decompression sickness. J Appl Physiol 119:427–434
CAS
PubMed
Article
Google Scholar
Jy W, Jimenez J, Mauro L, Horstman L, Cheng P, Ahn E, Bidot C, Ahn Y (2005) Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation. J Thromb Haemost 3:1301–1308
CAS
PubMed
Article
Google Scholar
Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI (2007) Platelet microparticle membranes have 50-to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 98:425–434
Google Scholar
Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579
PubMed
Article
CAS
Google Scholar
Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and-granules. Blood 94:3791–3799
CAS
Article
PubMed
Google Scholar
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705
PubMed
Article
CAS
Google Scholar
Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Ext Vesicles 3:23262
Article
Google Scholar
Deregibus MC, Figliolini F, D'antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G (2016) Charge-based precipitation of extracellular vesicles. Int J Mol Med 38:1359–1366
CAS
PubMed
PubMed Central
Article
Google Scholar
Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, Németh A, Sperlágh B, Baranyai T, Giricz Z (2016) Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 6:24316
PubMed
PubMed Central
Article
CAS
Google Scholar
Grigor’eva A, Dyrkheeva N, Bryzgunova O, Tamkovich S, Chelobanov B, Ryabchikova E (2017) Contamination of exosome preparations, isolated from biological fluids. Biochem (Moscow), Suppl Ser B: Biomed Chem 11:265–271
Article
Google Scholar
Mørk M, Handberg A, Pedersen S, Jørgensen MM, Bæk R, Nielsen MK, Kristensen SR (2017) Prospects and limitations of antibody-mediated clearing of lipoproteins from blood plasma prior to nanoparticle tracking analysis of extracellular vesicles. J Ext Vesicles 6:1308779
Article
CAS
Google Scholar
Connolly KD, Willis GR, Datta DB, Ellins EA, Ladell K, Price DA, Guschina IA, Rees DA, James PE (2014) Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia. J Lipid Res 55:2064–2072
CAS
PubMed
PubMed Central
Article
Google Scholar
Dashty M, Motazacker MM, Levels J, de Vries M, Mahmoudi M, Peppelenbosch MP, Rezaee F (2014) Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb Haemost 112:518–530
Article
CAS
Google Scholar
Illingworth DR, Portman OW (1972) Independence of phospholipid and protein exchange between plasma lipoproteins in vivo and in vitro. Biochim Biophys Acta (BBA)-Lipids Lipid Metab 280:281–289
CAS
Article
Google Scholar
Barr SI, Kottke B, Mao S (1981) Postprandial exchange of apolipoprotein C-III between plasma lipoproteins. Am J Clin Nutr 34:191–198
CAS
PubMed
Article
Google Scholar
Liu X, Bagdade J (1995) Neutral lipid mass transfer among lipoproteins in plasma from normolipidemic subjects is not an equimolar heteroexchange. J Lipid Res 36:2574–2579
CAS
PubMed
Article
Google Scholar
Ooi EM, Barrett PHR, Chan DC, Watts GF (2008) Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond) 114:611–624
CAS
Article
Google Scholar
Yang Z, Wang X, Chi X, Zhao F, Guo J, Ma P, Zhong J, Niu J, Pan X, Long G (2016) Neglected but important role of apolipoprotein E exchange in hepatitis C virus infection. J Virol 90:9632–9643
CAS
PubMed
PubMed Central
Article
Google Scholar
Angeloni NL, McMahon KM, Swaminathan S, Plebanek MP, Osman I, Volpert OV, Thaxton CS (2016) Pathways for modulating exosome lipids identified by high-density lipoprotein-like nanoparticle binding to scavenger receptor type B-1. Sci Rep 6:22915
CAS
PubMed
PubMed Central
Article
Google Scholar
Van Niel G, Bergam P, Di Cicco A, Hurbain I, Cicero AL, Dingli F, Palmulli R, Fort C, Potier MC, Schurgers LJ (2015) Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Rep 13:43–51
PubMed
Article
CAS
Google Scholar
van Niel G (2016) Study of exosomes shed new light on physiology of amyloidogenesis. Cell Mol Neurobiol 36:327–342
PubMed
Article
CAS
Google Scholar
Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, Nagy G, Mäger I, Wood MJ, El Andaloussi S (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10:e0145686
PubMed
PubMed Central
Article
CAS
Google Scholar
Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428:688–692
CAS
PubMed
Article
Google Scholar
Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9:4997–5000
CAS
PubMed
Article
Google Scholar
Kim D-K, Kang B, Kim OY, Choi D-S, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Ext Vesicles 2:20384
Article
CAS
Google Scholar
Hawari FI, Rouhani FN, Cui X, Yu Z-X, Buckley C, Kaler M, Levine SJ (2004) Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors. Proc Natl Acad Sci U S A 101:1297–1302
CAS
PubMed
PubMed Central
Article
Google Scholar
Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:9621–9630
CAS
PubMed
Article
Google Scholar
Rumbo C, Fernández-Moreira E, Merino M, Poza M, Mendez JA, Soares NC, Mosquera A, Chaves F, Bou G (2011) Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother 55:3084–3090
CAS
PubMed
PubMed Central
Article
Google Scholar
Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA, Nielsen KM (2014) Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol 80:3469–3483
PubMed
PubMed Central
Article
CAS
Google Scholar
Yaron S, Kolling GL, Simon L, Matthews KR (2000) Vesicle-mediated transfer of virulence genes from Escherichia coli O157: H7 to other enteric bacteria. Appl Environ Microbiol 66:4414–4420
CAS
PubMed
PubMed Central
Article
Google Scholar
Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn S-J, Burne RA, Koo H, Brady LJ, Wen ZT (2014) Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 196:2355–2366
PubMed
PubMed Central
Article
CAS
Google Scholar
Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Mililli L, Hunt C, Lu J, Osvath SR (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci 110:11541–11546
CAS
PubMed
Article
PubMed Central
Google Scholar
Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, D’cruze T, Reynolds EC, Dashper SG, Turnbull L (2017) Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep 7:7072
PubMed
PubMed Central
Article
CAS
Google Scholar
Fischer S, Cornils K, Speiseder T, Badbaran A, Reimer R, Indenbirken D, Grundhoff A, Brunswig-Spickenheier B, Alawi M, Lange C (2016) Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS One 11:e0163665
PubMed
PubMed Central
Article
CAS
Google Scholar
Shelke GV, Jang SC, Yin Y, Lässer C, Lötvall J (2016) Human mast cells release extracellular vesicle-associated DNA. Matters 2:e201602000034
Google Scholar
Sanderson RD, Bandari SK, Vlodavsky I (2017) Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol
Hakulinen J, Sankkila L, Sugiyama N, Lehti K, Keski-Oja J (2008) Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem 105:1211–1218
CAS
PubMed
Article
Google Scholar
Groth E, Pruessmeyer J, Babendreyer A, Schumacher J, Pasqualon T, Dreymueller D, Higashiyama S, Lorenzen I, Grötzinger J, Cataldo D (2016) Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochim Biophys Acta (BBA)-Mol Cell Res 1863:2795–2808
CAS
Article
Google Scholar
Sumida M, Hane M, Yabe U, Shimoda Y, Pearce OM, Kiso M, Miyagi T, Sawada M, Varki A, Kitajima K, Sato C (2015) Rapid trimming of cell surface polysialic acid (PolySia) by exovesicular sialidase triggers release of preexisting surface neurotrophin. J Biol Chem 290(21):13202–13214
CAS
PubMed
PubMed Central
Article
Google Scholar
Paolini L, Orizio F, Busatto S, Radeghieri A, Bresciani R, Bergese P, Monti E (2017) Exosomes secreted by HeLa cells shuttle on their surface the plasma membrane-associated sialidase NEU3. Biochemistry 56:6401–6408
CAS
PubMed
Article
Google Scholar
Bandari SK, Purushothaman A, Ramani VC, Brinkley GJ, Chandrashekar DS, Varambally S, Mobley JA, Zhang Y, Brown EE, Vlodavsky I (2017) Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Mat Biol
Mu W, Rana S, Zöller M (2013) Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15:875–IN4
PubMed
PubMed Central
Article
CAS
Google Scholar
Shimoda M, Khokha R (2017) Metalloproteinases in extracellular vesicles. Biochim Biophys Acta (BBA)-Mol Cell Res 1864:1989–2000
CAS
Article
Google Scholar
Szabó-Taylor KÉ, Tóth EÁ, Balogh AM, Sódar BW, Kádár L, Pálóczi K, Fekete N, Németh A, Osteikoetxea X, Vukman KV, Holub M, Pállinger É, Nagy G, Winyard PG, Buzás EI (2017) Monocyte activation drives preservation of membrane thiols by promoting release of oxidised membrane moieties via extracellular vesicles. Free Radic Biol Med 108:56–65
PubMed
Article
CAS
Google Scholar
Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253
CAS
PubMed
PubMed Central
Article
Google Scholar
Laragione T, Bonetto V, Casoni F, Massignan T, Bianchi G, Gianazza E, Ghezzi P (2003) Redox regulation of surface protein thiols: identification of integrin α-4 as a molecular target by using redox proteomics. Proc Natl Acad Sci 100:14737–14741
CAS
PubMed
Article
PubMed Central
Google Scholar
Szabó KÉ, Line K, Eggleton P, Littlechild JA, Winyard PG (2009) Structure and function of the human peroxiredoxin-based antioxidant system: the interplay between peroxiredoxins, thioredoxins, thioredoxin reductases, sulfiredoxins and sestrins. Redox Sign Regul Biol Med 143–79
Szabó-Taylor KÉ, Eggleton P, Turner CA, Faro MLL, Tarr JM, Tóth S, Whiteman M, Haigh RC, Littlechild JA, Winyard PG (2012) Lymphocytes from rheumatoid arthritis patients have elevated levels of intracellular peroxiredoxin 2, and a greater frequency of cells with exofacial peroxiredoxin 2, compared with healthy human lymphocytes. Int J Biochem Cell Biol 44:1223–1231
PubMed
PubMed Central
Article
CAS
Google Scholar
Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318
PubMed
Article
Google Scholar
Żmigrodzka M, Guzera M, Miśkiewicz A, Jagielski D, Winnicka A (2016) The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumour Biol 37(11):14391–14401
PubMed
Article
CAS
Google Scholar
Jiang X-M, Fitzgerald M, Grant CM, Hogg PJ (1999) Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J Biol Chem 274:2416–2423
CAS
PubMed
Article
Google Scholar
Fan G-Q, Qin R-R, Li Y-H, Song D-J, Chen T-S, Zhang W, Zhong M, Zhang Y, Xing Y-Q, Wang Z-H (2016) Endothelial cells microparticle-associated protein disulfide isomerase promotes platelet activation in metabolic syndrome. Oncotarget 7:83231
PubMed
PubMed Central
Article
Google Scholar
György B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464
PubMed
Article
CAS
Google Scholar
Kim S-M, Kim H-S (2017) Engineering of extracellular vesicles as drug delivery vehicles. Stem Cell Investig 4:74
PubMed
PubMed Central
Article
CAS
Google Scholar
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345
CAS
PubMed
Article
Google Scholar