Skip to main content

Isolation and Characterization of Extracellular Vesicles: Classical and Modern Approaches

  • Chapter
  • First Online:
Role of Exosomes in Biological Communication Systems

Abstract

Extracellular vesicles (EVs) are tiny membrane vesicles containing detailed cellular information. Recently, researchers have been focusing on EVs due to their role in intercellular communication, and prognostic, diagnostic, and therapeutic usage in medical purposes. In this chapter, we summarize the available technologies for EV characterization and describe their limitations and potential. Moreover, we highlight the emerging technologies with their development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF4:

Asymmetric flow field-flow fractionation

AFM:

Atomic force microscopy

AKI:

Kidney injury

CCD:

Coupling system

cryo-EM:

Cryogenic electron microscopy

CSF:

Cerebrospinal fluid

DLS:

Dynamic light scattering

DUC:

Differential ultracentrifugation

EM:

Electron microscopy

EVs:

Extracellular vesicles

FC:

Flow cytometry

FCS:

Fluorescence correlation spectroscopy

FIC:

Fluorescence imaging system

Fl-NTA:

Emitted fluorescence

IFC:

Image flow cytometer

LSPRi:

Localized SPR imaging

LTRS:

Laser tweezers Raman spectroscopy

MISEV:

Minimal information for studies of extracellular vesicles

MSC:

Mesenchymal stem cell

MVBs:

Multivesicular bodies

NTA:

Nanoparticle tracking analysis

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PCS:

Photon-correlation spectroscopy

PEG:

Polyethylene glycol

PMT:

Photomultiplier tube

Sc-NTA:

Scattered light

SEA:

Fluorescent microscopic analysis

SEC:

Size-exclusion chromatography

SEM:

Scanning electron microscopy

SERS:

Surface enhanced Raman spectroscopy

Sp-IRIS:

Single-particle IRIS

SPR:

Surface plasmon resonance

SPT:

Single-particle tracking

TEM:

Transmission electron microscopy

TRPS:

Tunable pulse resistive sensing

References

  • Aalberts M, van Dissel-Emiliani FM, van Adrichem NP et al (2012) Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod 86:82

    Article  PubMed  CAS  Google Scholar 

  • Akagi T, Kato K, Hanamura N, Kobayashi M, Ichiki T (2014) Evaluation of desialylation effect on zeta potential of extracellular vesicles secreted from human prostate cancer cells by on-chip microcapillary electrophoresis. Jpn J Appl Phys 53:06JL01

    Article  CAS  Google Scholar 

  • Akagi T, Kato K, Kobayashi M et al (2015) On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PLoS One:10

    Google Scholar 

  • Akers JC, Ramakrishnan V, Nolan JP et al (2016) Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF). PLoS One 11:e0149866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alderton GK (2012) Metastasis. Exosomes drive premetastatic niche formation. Nat Rev Cancer 12:447

    Article  PubMed  CAS  Google Scholar 

  • Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ (2010) Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:618–634

    Article  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  CAS  PubMed  Google Scholar 

  • Andreola G, Rivoltini L, Castelli C et al (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argov N, Wachsmann-Hogiu S, Freeman SL et al (2008) Size-dependent lipid content in human milk fat globules. J Agric Food Chem 56:7446–7450

    Article  CAS  PubMed  Google Scholar 

  • Arraud N, Gounou C, Turpin D, Brisson AR (2016) Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A 89:184–195

    Article  CAS  PubMed  Google Scholar 

  • Arslan F, Lai RC, Smeets MB et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312

    Article  CAS  PubMed  Google Scholar 

  • Au Yeung CL, Co NN, Tsuruga T et al (2016) Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 7:11150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayers L, Kohler M, Harrison P et al (2011) Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res 127:370–377

    Article  CAS  PubMed  Google Scholar 

  • Baddela VS, Nayan V, Rani P, Onteru SK, Singh D (2016) Physicochemical biomolecular insights into buffalo milk-derived nanovesicles. Appl Biochem Biotechnol 178:544–557

    Article  CAS  PubMed  Google Scholar 

  • Bank IE, Timmers L, Gijsberts CM et al (2015) The diagnostic and prognostic potential of plasma extracellular vesicles for cardiovascular disease. Expert Rev Mol Diagn 15:1577–1588

    Article  CAS  PubMed  Google Scholar 

  • Baran J, Baj-Krzyworzeka M, Weglarczyk K et al (2010) Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 59:841–850

    Article  CAS  PubMed  Google Scholar 

  • Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berne, B.J., Pecora, R. (2000) Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation

    Google Scholar 

  • Biggs CN, Siddiqui KM, Al-Zahrani AA et al (2016) Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 7:8839–8849

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosch S, de Beaurepaire L, Allard M et al (2016) Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 6:36162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning, Burlington

    Google Scholar 

  • Brisson AR, Tan S, Linares R, Gounou C, Arraud N (2017) Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets 28:263–271

    Article  CAS  PubMed  Google Scholar 

  • Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bumbrah GS, Sharma RM (2016) Raman spectroscopy–basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 6:209–215

    Article  Google Scholar 

  • Buschow SI, Nolte-‘t Hoen EN, van Niel G et al (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10:1528–1542

    Article  CAS  PubMed  Google Scholar 

  • Buzhynskyy N, Golczak M, Lai-Kee-Him J et al (2009) Annexin-A6 presents two modes of association with phospholipid membranes. A combined QCM-D, AFM and cryo-TEM study. J Struct Biol 168:107–116

    Article  CAS  PubMed  Google Scholar 

  • Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887

    Article  CAS  PubMed  Google Scholar 

  • Carnell-Morris P, Tannetta D, Siupa A, Hole P, Dragovic R (2017) Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis. Methods Mol Biol 1660:153–173

    Article  CAS  PubMed  Google Scholar 

  • Carney RP, Hazari S, Colquhoun M et al (2017) Multispectral optical tweezers for biochemical fingerprinting of CD9-positive exosome subpopulations. Anal Chem 89:5357–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casado S, Lobo M, Paino CL (2017) Dynamics of plasma membrane surface related to the release of extracellular vesicles by mesenchymal stem cells in culture. Sci Rep 7:6767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandler WL (2016) Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom 90:326–336

    Article  CAS  PubMed  Google Scholar 

  • Chandler WL, Yeung W, Tait JF (2011) A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost 9:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197

    Article  CAS  PubMed  Google Scholar 

  • Charoenviriyakul C, Takahashi Y, Morishita M, Nishikawa M, Takakura Y (2018) Role of extracellular vesicle surface proteins in the pharmacokinetics of extracellular vesicles. Mol Pharm 15:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Chen WW, Balaj L, Liau LM et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi DS (2015) Urinary extracellular vesicles for biomarker source to monitor polycystic kidney disease. Proteomics Clin Appl 9:447–448

    Article  CAS  PubMed  Google Scholar 

  • Cizmar P, Yuana Y (2017) Detection and characterization of extracellular vesicles by transmission and cryo-transmission electron microscopy. Methods Mol Biol 1660:221–232

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crivelli B, Chlapanidas T, Perteghella S et al (2017) Mesenchymal stem/stromal cell extracellular vesicles: from active principle to next generation drug delivery system. J Control Release 262:104–117

    Article  CAS  PubMed  Google Scholar 

  • Cvjetkovic A, Jang SC, Konecna B et al (2016) Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci Rep 6:36338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daaboul GG, Gagni P, Benussi L et al (2016) Digital detection of exosomes by interferometric imaging. Sci Rep 6:37246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies RT, Kim J, Jang SC et al (2012) Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip 12:5202–5210

    Article  CAS  PubMed  Google Scholar 

  • Day JS, Edwards HG, Dobrowski SA, Voice AM (2004) The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints. Spectrochim Acta A Mol Biomol Spectrosc 60:1725–1730

    Article  PubMed  CAS  Google Scholar 

  • De Broe ME, Wieme RJ, Logghe GN, Roels F (1977) Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro. Clin Chim Acta 81:237–245

    Article  PubMed  Google Scholar 

  • De Oliveira MA, Smith ZJ, Knorr F, De Araujo RE, Wachsmann-Hogiu S (2014) Long term Raman spectral study of power-dependent photodamage in red blood cells. Appl Phys Lett 104:103702

    Article  CAS  Google Scholar 

  • Deschout H, Raemdonck K, Stremersch S et al (2014) On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids. Nanoscale 6:1741–1747

    Article  CAS  PubMed  Google Scholar 

  • Dragovic RA, Gardiner C, Brooks AS et al (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7:780–788

    Article  CAS  PubMed  Google Scholar 

  • Duijvesz D, Luider T, Bangma CH, Jenster G (2011) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol 59:823–831

    Article  CAS  PubMed  Google Scholar 

  • Erdbrugger U, Rudy CK, Etter ME et al (2014) Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A 85:756–770

    Article  PubMed  CAS  Google Scholar 

  • Ertsgaard CT, Wittenberg NJ, Klemme DJ et al (2018) Integrated nanogap platform for sub-volt dielectrophoretic trapping and real-time Raman imaging of biological nanoparticles. Nano Lett 18:5946–5953

    Article  CAS  PubMed  Google Scholar 

  • Friedrich R, Block S, Alizadehheidari M et al (2017) A nano flow cytometer for single lipid vesicle analysis. Lab Chip 17:830–841

    Article  CAS  PubMed  Google Scholar 

  • Gardiner C, Shaw M, Hole P et al (2014) Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J Extracell Vesicles 3:25361

    Article  PubMed  Google Scholar 

  • Gardiner C, Di Vizio D, Sahoo S et al (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 5:32945

    Article  PubMed  CAS  Google Scholar 

  • Gigault J, Pettibone JM, Schmitt C, Hackley VA (2014) Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal Chim Acta 809:9–24

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson J, Arvidson G, Karlsson G, Almgren M (1995) Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta 1235:305–312

    Article  PubMed  Google Scholar 

  • Haka AS, Shafer-Peltier KE, Fitzmaurice M et al (2005) Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci 102:12371–12376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardij J, Cecchet F, Berquand A et al (2013) Characterisation of tissue factor-bearing extracellular vesicles with AFM: comparison of air-tapping-mode AFM and liquid Peak Force AFM. J Extracell Vesicles 2

    Google Scholar 

  • Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  CAS  PubMed  Google Scholar 

  • He M, Crow J, Roth M, Zeng Y, Godwin AK (2014) Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14:3773–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoog JL, Lotvall J (2015) Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 4:28680

    Article  PubMed  CAS  Google Scholar 

  • Huber V, Fais S, Iero M et al (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804

    Article  CAS  PubMed  Google Scholar 

  • Im H, Yang K, Lee H, Castro CM (2017) Characterization of extracellular vesicles by surface plasmon resonance. Methods Mol Biol 1660:133–141

    Article  CAS  PubMed  Google Scholar 

  • Issman L, Brenner B, Talmon Y, Aharon A (2013) Cryogenic transmission electron microscopy nanostructural study of shed microparticles. PLoS One 8:e83680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Y, Shi M, Liu Y et al (2017) Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed Engl 56:11916–11920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S (2014) Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14:1891–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HK, Song KS, Park YS et al (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39:184–191

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Lechman ER, Bianco N et al (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 174:6440–6448

    Article  CAS  PubMed  Google Scholar 

  • Kwizera EA, O'Connor R, Vinduska V et al (2018) Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8:2722–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamparski HG, Metha-Damani A, Yao JY et al (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270:211–226

    Article  CAS  PubMed  Google Scholar 

  • Leca J, Martinez S, Lac S et al (2016) Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest 126:4140–4156

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee K, Fraser K, Ghaddar B et al (2018) Multiplexed profiling of single extracellular vesicles. ACS Nano 12:494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libregts S, Arkesteijn GJA, Nemeth A, Nolte-'t Hoen ENM, Wauben MHM (2018) Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest. J Thromb Haemost 16:1423–1436

    Article  CAS  PubMed  Google Scholar 

  • Liga A, Vliegenthart AD, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M (2015) Exosome isolation: a microfluidic road-map. Lab Chip 15:2388–2394

    Article  CAS  PubMed  Google Scholar 

  • Linares R, Tan S, Gounou C, Brisson AR (2017) Imaging and quantification of extracellular vesicles by transmission electron microscopy. Methods Mol Biol 1545:43–54

    Article  CAS  PubMed  Google Scholar 

  • Logozzi M, De Milito A, Lugini L et al (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4:e5219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lozano-Ramos I, Bancu I, Oliveira-Tercero A et al (2015) Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. J Extracell Vesicles 4:27369

    Article  PubMed  CAS  Google Scholar 

  • Luga V, Zhang L, Viloria-Petit AM et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556

    Article  CAS  PubMed  Google Scholar 

  • Maas SL, Broekman ML, de Vrij J (2017) Tunable resistive pulse sensing for the characterization of extracellular vesicles. Methods Mol Biol 1545:21–33

    Article  CAS  PubMed  Google Scholar 

  • Mateescu B, Kowal EJ, van Balkom BW et al (2017) Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell Vesicles 6:1286095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9:4997–5000

    Article  CAS  PubMed  Google Scholar 

  • McNicholas K, Li JY, Michael MZ, Gleadle JM (2017) Albuminuria is not associated with elevated urinary vesicle concentration but can confound nanoparticle tracking analysis. Nephrology 22:854–863

    Article  CAS  PubMed  Google Scholar 

  • van der Meel R, Fens MH, Vader P et al (2014) Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195:72–85

    Article  PubMed  CAS  Google Scholar 

  • Merchant ML, Rood IM, Deegens JKJ, Klein JB (2017) Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 13:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon PG, Lee JE, Cho YE et al (2016) Identification of developmental endothelial locus-1 on circulating extracellular vesicles as a novel biomarker for early breast cancer detection. Clin Cancer Res 22:1757–1766

    Article  CAS  PubMed  Google Scholar 

  • Mork M, Pedersen S, Botha J, Lund SM, Kristensen SR (2016) Preanalytical, analytical, and biological variation of blood plasma submicron particle levels measured with nanoparticle tracking analysis and tunable resistive pulse sensing. Scand J Clin Lab Invest 76:349–360

    Article  PubMed  CAS  Google Scholar 

  • Nanou A, Crespo M, Flohr P, De Bono JS, Terstappen L (2018) Scanning electron microscopy of circulating tumor cells and tumor-derived extracellular vesicles. Cancers (Basel) 10:416

    Article  CAS  Google Scholar 

  • Nolan JP, Duggan E (2018) Analysis of individual extracellular vesicles by flow cytometry. Methods Mol Biol 1678:79–92

    Article  CAS  PubMed  Google Scholar 

  • Nolan JP, Jones JC (2017) Detection of platelet vesicles by flow cytometry. Platelets 28:256–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma J, Yaddanapudi SC, Pigati L et al (2012) MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res 40:9125–9138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Hwang M, Choi B et al (2017) Exosome classification by pattern analysis of surface-enhanced Raman spectroscopy data for lung cancer diagnosis. Anal Chem 89:6695–6701

    Article  CAS  PubMed  Google Scholar 

  • Pearson LJ, Klaharn I-Y, Thongsawang B et al (2017) Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers. PLoS One 12:e0178601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peinado H, Aleckovic M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Pol E, van Gemert MJ, Sturk A, Nieuwland R, van Leeuwen TG (2012) Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost 10:919–930

    Article  PubMed  CAS  Google Scholar 

  • van der Pol E, Sturk A, van Leeuwen T, Nieuwland R, Coumans F (2018) Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost 16:1236–1245

    Article  PubMed  Google Scholar 

  • Pospichalova V, Svoboda J, Dave Z et al (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles 4:25530

    Article  PubMed  CAS  Google Scholar 

  • Puppels GJ, de Mul FF, Otto C et al (1990) Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347:301–303

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quek C, Hill AF (2017) The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 483:1178–1186

    Article  CAS  PubMed  Google Scholar 

  • Raghu D, Christodoulides JA, Christophersen M et al (2018) Nanoplasmonic pillars engineered for single exosome detection. PLoS One 13:e0202773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Richards KE, Zeleniak AE, Fishel ML et al (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36:1770–1778

    Article  CAS  PubMed  Google Scholar 

  • Saveyn H, De Baets B, Thas O et al (2010) Accurate particle size distribution determination by nanoparticle tracking analysis based on 2-D Brownian dynamics simulation. J Colloid Interface Sci 352:593–600

    Article  CAS  PubMed  Google Scholar 

  • Settle FA (1997) Handbook of instrumental techniques for analytical chemistry: prentice Hall PTR

    Google Scholar 

  • Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZJ, Lee C, Rojalin T et al (2015) Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles 4:28533

    Article  PubMed  CAS  Google Scholar 

  • Sokolova V, Ludwig AK, Hornung S et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87:146–150

    Article  CAS  PubMed  Google Scholar 

  • Somasundaram R, Herlyn M (2012) Melanoma exosomes: messengers of metastasis. Nat Med 18:853–854

    Article  CAS  PubMed  Google Scholar 

  • Stoner SA, Duggan E, Condello D et al (2016) High sensitivity flow cytometry of membrane vesicles. Cytometry A 89:196–206

    Article  CAS  PubMed  Google Scholar 

  • Suárez H, Gámez-Valero A, Reyes R et al (2017) A bead-assisted flow cytometry method for the semi-quantitative analysis of extracellular vesicles. Sci Rep 7:11271–11271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szajnik M, Derbis M, Lach M et al (2013) Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale)

    Google Scholar 

  • Tauro BJ, Greening DW, Mathias RA et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304

    Article  CAS  PubMed  Google Scholar 

  • Taylor DD, Shah S (2015) Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 87:3–10

    Article  CAS  PubMed  Google Scholar 

  • Tchanque-Fossuo CN, Gong B, Poushanchi B et al (2013) Raman spectroscopy demonstrates Amifostine induced preservation of bone mineralization patterns in the irradiated murine mandible. Bone 52:712–717

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Qiu G, Ng SP et al (2017) Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron 94:400–407

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22

    PubMed  Google Scholar 

  • Thery C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian YF, Ning CF, He F, Yin BC, Ye BC (2018) Highly sensitive detection of exosomes by SERS using gold nanostar@Raman reporter@nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor. Analyst 143:4915–4922

    Article  CAS  PubMed  Google Scholar 

  • Torregrosa Paredes P, Gutzeit C, Johansson S et al (2014) Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy 69:463–471

    Article  CAS  PubMed  Google Scholar 

  • Usman WM, Pham TC, Kwok YY et al (2018) Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun 9:2359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • Vestad B, Llorente A, Neurauter A et al (2017) Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: a variation study. J Extracell Vesicles 6:1344087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Vlist EJ, Nolte-'t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7:1311–1326

    Article  PubMed  CAS  Google Scholar 

  • Vogel R, Coumans FA, Maltesen RG et al (2016) A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. J Extracell Vesicles 5:31242

    Article  PubMed  CAS  Google Scholar 

  • Vogel R, Pal AK, Jambhrunkar S et al (2017) High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci Rep 7:17479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vorselen D, Marchetti M, Lopez-Iglesias C et al (2018a) Multilamellar nanovesicles show distinct mechanical properties depending on their degree of lamellarity. Nanoscale 10:5318–5324

    Article  CAS  PubMed  Google Scholar 

  • Vorselen D, van Dommelen SM, Sorkin R et al (2018b) The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis. Nat Commun 9:4960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahlgren J, De LKT, Brisslert M et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wu HJ, Fine D et al (2013) Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip 13:2879–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zong S, Wang Y et al (2018) Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 10:9053–9062

    Article  CAS  PubMed  Google Scholar 

  • Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334

    Article  CAS  PubMed  Google Scholar 

  • Welker MW, Reichert D, Susser S et al (2012) Soluble serum CD81 is elevated in patients with chronic hepatitis C and correlates with alanine aminotransferase serum activity. PLoS One 7:e30796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Xing F, Wu SY, Watabe K (2017) Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochim Biophys Acta Rev Cancer 1868:538–563

    Article  CAS  PubMed  Google Scholar 

  • Wyss R, Grasso L, Wolf C et al (2014) Molecular and dimensional profiling of highly purified extracellular vesicles by fluorescence fluctuation spectroscopy. Anal Chem 86:7229–7233

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Takahashi Y, Nishikawa M, Takakura Y (2016) Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm 98:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Dutta S, Liu Z et al (2019) A label-free platform for identification of exosomes from different sources. ACS Sens 4:488–497

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wei F, Schafer C, Wong DT (2014) Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS One 9:e110641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Peng P, Kuang Y et al (2016) Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis. Tumor Biol 37:4213–4221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Deanship of Faculty of Veterinary Medicine at Damanhour University for their technical support.

This article does not contain any studies with animals performed by any of the authors.

This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Noreldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noreldin, A.E., Khafaga, A.F., Barakat, R.A. (2021). Isolation and Characterization of Extracellular Vesicles: Classical and Modern Approaches. In: Alzahrani, F.A., Saadeldin, I.M. (eds) Role of Exosomes in Biological Communication Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6599-1_1

Download citation

Publish with us

Policies and ethics