Skip to main content
Log in

sIL-24 peptide, a human interleukin-24 isoform, induces mitochondrial-mediated apoptosis in human cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Interleukin-24 (IL-24) is a unique cytokine in the IL-10 family that reveals tumor-suppressive activity against a broad range of cancers. Alternative splicing of human IL-24 generates several isoforms with different pro-apoptotic activities. In the current study, we aimed to investigate the cytotoxic properties of a recombinant smallest isoform of IL-24 (sIL-24) and the underlying molecular mechanisms in PC-3, A549, U937, and Raji cancer cells as well as normal cell line MRC-5.

Methods

Following treatment of the cells with recombinant sIL-24 peptide and full-length IL-24 protein, cytotoxicity was determined by MTT assay. Apoptosis induction was evaluated using annexin-V/PI double staining flow cytometry and Hoechst 33342 staining. The expression of Bax, Bcl-2, cytochrome c, and caspase-3 was analyzed by Western blotting.

Results

MTT assay exhibited that sIL-24 dose and time dependently inhibited the proliferation of IL-24 receptor-positive PC-3, U937, and Raji cells more effectively than full-length IL-24. In contrast, sIL-24 had little cytotoxic effect on A549 cells lacking the IL-24 receptor, or on MRC-5 normal cells. Flow cytometric analysis and morphological observation revealed an efficient apoptosis induction in the receptor-positive cells. Furthermore, Western blot assay demonstrated that cell death induced by sIL-24 was associated with upregulation of the Bax/Bcl-2 ratio, cytochrome c release, and the expression of cleaved caspase-3, suggesting that sIL-24 induced apoptosis mainly through the mitochondrial pathway. Notably, among the tested cells, induction of apoptosis was more significant in PC-3 cells.

Conclusion

Our results suggest that the sIL-24 peptide is a promising candidate for potential treatment of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66(1):7–30. doi:10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Chaudhary T, Chahar A, Sharma JK, Kaur K, Dang A (2015) Phytomedicine in the treatment of cancer: a health technology assessment. J Clin Diagn Res 9(12):XC04–XC09. doi:10.7860/JCDR/2015/15701.6913

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shahneh FZ, Valiyari S, Azadmehr A, Hajiaghaee R, Yaripour S, Bandehagh A, Baradaran B (2013) Inhibition of growth and induction of apoptosis in fibrosarcoma cell lines by Echinophora platyloba DC: in vitro analysis. Adv Pharmacol Sci, p. 7. doi:10.1155/2013/512931 (Article ID 512931)

  4. Bhaskar RK (2016) Apoptosis—a distinctive form of cell death as biochemical, molecular and morphological changes. Int J Sci Res 5(8):131–137

    Google Scholar 

  5. Koff JL, Ramachandiran S, Bernal-Mizrachi L (2015) A time to kill: targeting apoptosis in cancer. Int J Mol Sci 16(2):2942–2955. doi:10.3390/ijms16022942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fajka-Boja R, Czibula Á, Monostori É (2015) Genetics, molecular and cell biology of apoptotic cell death. Acta Biol Szeged 59(1):143–156

    Google Scholar 

  7. Dash R, Bhutia SK, Azab B, Z-z Su, Quinn BA, Kegelmen TP, Das SK, Kim K, Lee S-G, Park MA (2010) mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 21(5):381–391. doi:10.1016/j.cytogfr.2010.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baig S, Seevasant I, Mohamad J, Mukheem A, Huri H, Kamarul T (2016) Potential of apoptotic pathway-targeted cancer therapeutic research: where do we stand? Cell Death Dis 7(1):e2058. doi:10.1038/cddis.2015.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan Y, Sanders AJ, Zhang Y, Martin TA, Owen S, Ruge F, Jiang WG (2015) Interleukin-24 (IL-24) expression and biological impact on HECV endothelial cells. Cancer Genom Proteom 12(5):243–250

    CAS  Google Scholar 

  10. Yan S, Zhang H, Xie Y, Sheng W, Xiang J, Ye Z, Chen W, Yang J (2010) Recombinant human interleukin-24 suppresses gastric carcinoma cell growth in vitro and in vivo. Cancer Investig 28(1):85–93. doi:10.3109/07357900903095672

    Article  CAS  Google Scholar 

  11. Zhang B-F, Liu J-J, Pei D-S, Yang Z-X, Di J-H, Chen F-F, Li H-Z, Xu W, Wu Y-P, Zheng J-N (2011) Potent antitumor effect elicited by RGD-mda-7, an mda-7/IL-24 mutant, via targeting the integrin receptor of tumor cells. Cancer Biother Radiopharm 26(5):647–655. doi:10.1089/cbr.2011.0984

    Article  CAS  PubMed  Google Scholar 

  12. Menezes ME, Bhatia S, Bhoopathi P, Das SK, Emdad L, Dasgupta S, Dent P, Wang X-Y, Sarkar D, Fisher PB (2014) MDA-7/IL-24: multifunctional cancer killing cytokine. Adv Exp Med Biol 818:127–153. doi:10.1007/978-1-4471-6458-6_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Panneerselvam J, Srivastava A, Muralidharan R, Wang Q, Zheng W, Zhao L, Chen A, Zhao Y, Munshi A, Ramesh R (2016) IL-24 modulates the high mobility group (HMG) A1/miR222/AKT signaling in lung cancer cells. Oncotarget 7(43):70247–70263

    PubMed  PubMed Central  Google Scholar 

  14. Chen X, Liu D, Wang J, Su Q, Zhou P, Liu J, Luan M, Xu X (2014) Suppression effect of recombinant adenovirus vector containing hIL-24 on Hep-2 laryngeal carcinoma cells. Oncol Lett 7(3):771–777. doi:10.3892/ol.2014.1789

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Z, Xu L, Yuan H, Zhang Y, Zhang X, Zhao D (2015) Oncolytic adenovirus-mediated mda-7/IL-24 expression suppresses osteosarcoma growth and enhances sensitivity to doxorubicin. Mol Med Rep 12(4):6358–6364. doi:10.3892/mmr.2015.4180

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Xu R, Tao X, Dong Y, Lv X, Sun A, Wei D (2016) TAT-IL-24-KDEL-induced apoptosis is inhibited by survivin but restored by the small molecular survivin inhibitor, YM155, in cancer cells. Oncotarget 7(24):37030–37042. doi:10.18632/oncotarget.9458

    Article  PubMed Central  Google Scholar 

  17. Rahmani M, Mayo M, Dash R, Sokhi UK, Dmitriev IP, Sarkar D, Dent P, Curiel DT, Fisher PB, Grant S (2010) Melanoma differentiation associated gene-7/interleukin-24 potently induces apoptosis in human myeloid leukemia cells through a process regulated by endoplasmic reticulum stress. Mol Pharmacol 78(6):1096–1104. doi:10.1124/mol.110.068007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang B-X, Duan Y-J, Dong C-Y, Zhang F, Gao W-F, Cui X-Y, Lin Y-M, Ma X-T (2011) Novel functions for mda-7/IL-24 and IL-24 delE5: regulation of differentiation of acute myeloid leukemic cells. Mol Cancer Ther 10(4):615–625. doi:10.1158/1535-7163.MCT-10-0863

    Article  CAS  PubMed  Google Scholar 

  19. Sandey M, Bird RC, Das SK, Sarkar D, Curiel DT, Fisher PB, Smith BF (2014) Characterization of the canine mda-7 gene, transcripts and expression patterns. Gene 547(1):23–33. doi:10.1016/j.gene.2014.05.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Persaud L, De Jesus D, Brannigan O, Richiez-Paredes M, Huaman J, Alvarado G, Riker L, Mendez G, Dejoie J, Sauane M (2016) Mechanism of action and applications of interleukin 24 in immunotherapy. Int J Mol Sci 17(6):856–869. doi:10.3390/ijms17060869

    Article  Google Scholar 

  21. Whitaker EL, Filippov V, Filippova M, Guerrero-Juarez CF, Duerksen-Hughes PJ (2011) Splice variants of mda-7/IL-24 differentially affect survival and induce apoptosis in U2OS cells. Cytokine 56(2):272–281. doi:10.1016/j.cyto.2011.07.020

    Article  CAS  PubMed Central  Google Scholar 

  22. Xiao Y-F, Jie M-M, Li B-S, Hu C-J, Xie R, Tang B, Yang S-M (2015) Peptide-based treatment: a promising cancer therapy. J Immunol Res, p. 13. doi: 10.1155/2015/761820 (Article ID 761820)

  23. Valiyari S, Mahdian R, Salimi M, Oloomi M, Golshani M, Shokrgozar MA, Bouzari S (2017) Expression, Purification and Functional Assessment of a New Isoform of Human Interleukin-24 in Escherichia coli. Braz Arch Biol Technol 59:e17160621. doi: 10.190/1678-4324-2017160621 (in Press)

  24. Kruger NJ (2009) The Bradford method for protein quantitation. In: Walker JM (ed) The protein protocols handbook, 3rd edn. Humana Press, New York, pp 17–24. doi:10.1007/978-1-59745-198-7_4

    Chapter  Google Scholar 

  25. Dash R, Dmitriev I, Su Z, Bhutia S, Azab B, Vozhilla N, Yacoub A, Dent P, Curiel D, Sarkar D, Fisher PB (2010) Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad. 5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer Gene Ther 17(7):447–456. doi:10.1038/cgt.2009.91

    Article  CAS  PubMed  Google Scholar 

  26. Azab B, Dash R, Das SK, Bhutia SK, Shen XN, Quinn BA, Sarkar S, Wang XY, Hedvat M, Dmitriev IP, Curiel DT, Grant S, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB (2012) Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad. 5/3) in combination with the apogossypol derivative BI-97C1 (Sabutoclax) improves therapeutic efficacy in low CAR colorectal cancer cells. J Cell Physiol 227(5):2145–2153. doi:10.1002/jcp.22947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Gupta P, Emdad L, Lebedeva IV (2010) MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anticancer Drugs 21(8):725–731. doi:10.1097/CAD.0b013e32833cfbe1

    Article  CAS  PubMed Central  Google Scholar 

  28. Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, James CD, Randolph A, Valerie K, Walter MR (2005) Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 24(51):7552–7566. doi:10.1038/sj.onc.1208911

    Article  CAS  PubMed  Google Scholar 

  29. Liu T-Y, Tan Z-J, Jiang L, Gu J-F, Wu X-S, Cao Y, Li M-L, Wu K-J, Liu Y-B (2013) Curcumin induces apoptosis in gallbladder carcinoma cell line GBC-SD cells. Cancer Cell Int 13(1):64. doi:10.1186/1475-2867-13-64

    Article  CAS  PubMed Central  Google Scholar 

  30. Richardson JSM, Sethi G, Lee GS, Malek SNA (2016) Chalepin: isolated from Ruta angustifolia L. BMC Complement Altern Med 16(1):389. doi:10.1186/s12906-016-1368-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Delbridge ARD, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16(2):99–109

    Article  CAS  PubMed  Google Scholar 

  32. Rajagopalan P, Alahmari KA, Elbessoumy AA, Balasubramaniam M, Suresh R, Shariff MEA, Chandramoorthy HC (2016) Biological evaluation of 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1): a novel Akt inhibitor with potent activity in lung cancer. Cancer Chemother Pharmacol 77(2):393–404. doi:10.1007/s00280-015-2956-8

    Article  CAS  PubMed  Google Scholar 

  33. Sitarek P, Skała E, Toma M, Wielanek M, Szemraj J, Nieborowska-Skorska M, Kolasa M, Skorski T, Wysokińska H, Śliwiński T (2016) A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L. Tumor Biol 37(7):8753–8764. doi:10.1007/s13277-015-4714-2

    Article  CAS  Google Scholar 

  34. Karaca B, Degirmenci M, Ozveren A, Atmaca H, Bozkurt E, Karabulut B, Sanli UA, Uslu R (2015) Docetaxel in combination with octreotide shows synergistic apoptotic effect by increasing SSTR2 and SSTR5 expression levels in prostate and breast cancer cell lines. Cancer Chemother Pharmacol 75(6):1273–1280. doi:10.1007/s00280-015-2756-1

    Article  CAS  PubMed  Google Scholar 

  35. Rajagopalan P, Alahmari KA, Elbessoumy AA, Balasubramaniam M, Suresh R, Shariff MEA, Chandramoorthy HC (2016) Biological evaluation of 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1): a novel Akt inhibitor with potent activity in lung cancer. Cancer Chemother Pharmacol 77(2):393–404. doi:10.1007/s00280-015-2956-8

    Article  CAS  PubMed  Google Scholar 

  36. Ding H, Han R, Chen X, Fang W, Liu M, Wang X, Wei Q, Kodithuwakku ND, Li Y (2016) Clematichinenoside (AR) attenuates hypoxia/reoxygenation-induced H9c2 cardiomyocyte apoptosis via a mitochondria-mediated signaling pathway. Molecules 21(6):683. doi:10.3390/molecules21060683

    Article  Google Scholar 

  37. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8(4):603–619

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kavanagh E, Rodhe J, Burguillos M, Venero J, Joseph B (2014) Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia. Cell Death Dis 5(12):e1565. doi:10.1038/cddis.2014.514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panneerselvam J, Munshi A, Ramesh R (2013) Molecular targets and signaling pathways regulated by interleukin (IL)-24 in mediating its antitumor activities. J Mol Signal 8(1):15

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Bouzari.

Ethics declarations

Funding

We would like to thank Pasteur Institute of Iran for financial support of this project.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiyari, S., Salami, M., Mahdian, R. et al. sIL-24 peptide, a human interleukin-24 isoform, induces mitochondrial-mediated apoptosis in human cancer cells. Cancer Chemother Pharmacol 80, 451–459 (2017). https://doi.org/10.1007/s00280-017-3370-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3370-1

Keywords

Navigation