Skip to main content

Advertisement

Log in

A phase I study of docetaxel with ketoconazole modulation in patients with advanced cancers

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aims were to determine the maximum tolerable dose (MTD) of docetaxel with CYP3A inhibition by ketoconazole, and to correlate the pharmacokinetics of docetaxel with midazolam phenotyping of CYP3A activity.

Methods

Forty-one patients with refractory metastatic cancers were treated with an escalating dose of intravenous docetaxel once in every 3 week of 10 mg/m2, concurrently with oral ketoconazole 200 mg twice daily for 3 days starting 2 days before the administration of docetaxel. Midazolam phenotyping test with ketoconazole modulation was performed before the first cycle of docetaxel. Docetaxel and midazolam pharmacokinetics were compared to our previous study of docetaxel treatment without ketoconazole modulation.

Results

Neutropenia was the dose-limiting toxicity. The maximum tolerated dose was 70 mg with mean AUC at 70 mg similar to 75 mg/m2 of docetaxel without ketoconazole. The plasma clearances of docetaxel and midazolam were reduced by 1.7- and 6-fold, respectively. The variability of midazolam AUC was reduced from 157 to 67%, but variability of docetaxel clearance was not reduced by CYP3A inhibition. Docetaxel clearance correlated with renal function and maximum concentration of ketoconazole, but not midazolam clearance or other variables of hepatic function.

Conclusion

Fixed dosing was found to be feasible, without increased variability of clearance or neutrophil toxicity compared to BSA-based dosing. With ketoconazole modulation, docetaxel clearance correlated with renal function but not CYP3A phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baker SD, van Schaik RH, Rivory LP, Ten Tije AJ, Dinh K, Graveland WJ, Schenk PW, Charles KA, Clarke SJ, Carducci MA, McGuire WP, Dawkins F, Gelderblom H, Verweij J, Sparreboom A (2004) Factors affecting cytochrome P-450 3A activity in cancer patients. Clin Cancer Res 10:8341–8350

    Article  PubMed  CAS  Google Scholar 

  2. Bourrie M, Meunier V, Berger Y, Fabre G (1996) Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 277:321–332

    PubMed  CAS  Google Scholar 

  3. Boxenbaum H (1999) Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general. J Pharm Pharm Sci 2:47–52

    PubMed  CAS  Google Scholar 

  4. Boxenbaum H (1999) Human in vivo competitive inhibition of P450 substrates: increased plasma concentrations as a function of hepatic extraction ratio and percent inhibition. J Pharm Pharm Sci 2:89–91

    PubMed  CAS  Google Scholar 

  5. Bruno R, Hille D, Riva A, Vivier N, ten Bokkel Huinnink WW, van Oosterom AT, Kaye SB, Verweij J, Fossella FV, Valero V, Rigas JR, Seidman AD, Chevallier B, Fumoleau P, Burris HA, Ravdin PM, Sheiner LB (1998) Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol 16:187–196

    PubMed  CAS  Google Scholar 

  6. Bruno R, Vivier N, Veyrat-Follet C, Montay G, Rhodes GR (2001) Population pharmacokinetics and pharmacokinetic–pharmacodynamic relationships for docetaxel. Invest New Drugs 19:163–169

    Article  PubMed  CAS  Google Scholar 

  7. Chen YL, Felder L, Jiang X, Naidong W (2002) Determination of ketoconazole in human plasma by high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 774:67–78

    Article  PubMed  CAS  Google Scholar 

  8. Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36:99–114

    Article  PubMed  CAS  Google Scholar 

  9. D’Argenio DZ, Schumitzky A (1997) ADAPT II user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resources, Los Angeles

  10. Engels FK, Loos WJ, Mathot RA, van Schaik RH, Verweij J (2007) Influence of ketoconazole on the fecal and urinary disposition of docetaxel. Cancer Chemother Pharmacol 60(4):569–579

    Article  PubMed  CAS  Google Scholar 

  11. Engels FK, Mathot RA, Loos WJ, van Schaik RH, Verweij J (2006) Influence of high-dose ketoconazole on the pharmacokinetics of docetaxel. Cancer Biol Ther 5:833–839

    Article  PubMed  CAS  Google Scholar 

  12. Engels FK, Ten Tije AJ, Baker SD, Lee CK, Loos WJ, Vulto AG, Verweij J, Sparreboom A (2004) Effect of cytochrome P450 3A4 inhibition on the pharmacokinetics of docetaxel. Clin Pharmacol Ther 75:448–454

    Article  PubMed  CAS  Google Scholar 

  13. Gibbs MA, Thummel KE, Shen DD, Kunze KL (1999) Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 27:180–187

    PubMed  CAS  Google Scholar 

  14. Goh BC, Lee SC, Wang LZ, Fan L, Guo JY, Lamba J, Schuetz E, Lim R, Lim HL, Ong AB, Lee HS (2002) Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 20:3683–3690

    Article  PubMed  CAS  Google Scholar 

  15. Gorski JC, Hall SD, Jones DR, VandenBranden M, Wrighton SA (1994) Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 47:1643–1653

    Article  PubMed  CAS  Google Scholar 

  16. Guitton J, Cohen S, Tranchand B, Vignal B, Droz JP, Guillaumont M, Manchon M, Freyer G (2005) Quantification of docetaxel and its main metabolites in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 19:2419–2426

    Article  PubMed  CAS  Google Scholar 

  17. Gurney H (1996) Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J Clin Oncol 14:2590–2611

    PubMed  CAS  Google Scholar 

  18. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH (2000) The effect of an individual’s cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 6:1255–1258

    PubMed  CAS  Google Scholar 

  19. Kharasch ED, Thummel KE, Watkins PB (2005) CYP3A probes can quantitatively predict the in vivo kinetics of other CYP3A substrates and can accurately assess CYP3A induction and inhibition. Mol Interv 5:151–153

    Article  PubMed  CAS  Google Scholar 

  20. Marre F, Sanderink GJ, de Sousa G, Gaillard C, Martinet M, Rahmani R (1996) Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 56:1296–1302

    PubMed  CAS  Google Scholar 

  21. Martinez C, Garcia-Martin E, Pizarro RM, Garcia-Gamito FJ, Agundez JA (2002) Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy. Br J Cancer 87:681–686

    Article  PubMed  CAS  Google Scholar 

  22. Maurice M, Pichard L, Daujat M, Fabre I, Joyeux H, Domergue J, Maurel P (1992) Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J 6:752–758

    PubMed  CAS  Google Scholar 

  23. Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S (2002) Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer 97:129–132

    Article  PubMed  CAS  Google Scholar 

  24. Miyoshi Y, Taguchi T, Kim SJ, Tamaki Y, Noguchi S (2005) Prediction of response to docetaxel by immunohistochemical analysis of CYP3A4 expression in human breast cancers. Breast Cancer 12:11–15

    Article  PubMed  Google Scholar 

  25. Puisset F, Chatelut E, Dalenc F, Busi F, Cresteil T, Azema J, Poublanc M, Hennebelle I, Lafont T, Chevreau C, Roche H (2004) Dexamethasone as a probe for docetaxel clearance. Cancer Chemother Pharmacol 54:265–272

    Article  PubMed  CAS  Google Scholar 

  26. Reilly JJ, Workman P (1993) Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile? A review of theoretical and practical considerations. Cancer Chemother Pharmacol 32:411–418

    Article  PubMed  CAS  Google Scholar 

  27. Rosing H, Lustig V, van Warmerdam LJ, Huizing MT, ten Bokkel Huinink WW, Schellens JH, Rodenhuis S, Bult A, Beijnen JH (2000) Pharmacokinetics and metabolism of docetaxel administered as a 1-h intravenous infusion. Cancer Chemother Pharmacol 45:213–218

    Article  PubMed  CAS  Google Scholar 

  28. Sawyer M, Ratain MJ (2001) Body surface area as a determinant of pharmacokinetics and drug dosing. Invest New Drugs 19:171–177

    Article  PubMed  CAS  Google Scholar 

  29. Shou M, Martinet M, Korzekwa KR, Krausz KW, Gonzalez FJ, Gelboin HV (1998) Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 8:391–401

    Article  PubMed  CAS  Google Scholar 

  30. Sparreboom A, Van Tellingen O, Scherrenburg EJ, Boesen JJ, Huizing MT, Nooijen WJ, Versluis C, Beijnen JH (1996) Isolation, purification, and biological activity of major docetaxel metabolites from human feces. Drug Metab Dispos 24:655–658

    PubMed  CAS  Google Scholar 

  31. Toyo’oka T, Kumaki Y, Kanbori M, Kato M, Nakahara Y (2003) Determination of hypnotic benzodiazepines (alprazolam, estazolam, and midazolam) and their metabolites in rat hair and plasma by reversed-phase liquid-chromatography with electrospray ionization mass spectrometry. J Pharm Biomed Anal 30:1773–1787

    Article  PubMed  CAS  Google Scholar 

  32. Van Veldhuizen PJ, Reed G, Aggarwal A, Baranda J, Zulfiqar M, Williamson S (2003) Docetaxel and ketoconazole in advanced hormone-refractory prostate carcinoma: a phase I and pharmacokinetic study. Cancer 98:1855–1862

    Article  PubMed  Google Scholar 

  33. Yamamoto N, Tamura T, Kamiya Y, Sekine I, Kunitoh H, Saijo N (2000) Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J Clin Oncol 18:2301–2308

    PubMed  CAS  Google Scholar 

  34. Yamamoto N, Tamura T, Murakami H, Shimoyama T, Nokihara H, Ueda Y, Sekine I, Kunitoh H, Ohe Y, Kodama T, Shimizu M, Nishio K, Ishizuka N, Saijo N (2005) Randomized pharmacokinetic and pharmacodynamic study of docetaxel: dosing based on body-surface area compared with individualized dosing based on cytochrome P450 activity estimated using a urinary metabolite of exogenous cortisol. J Clin Oncol 23:1061–1069

    Article  PubMed  CAS  Google Scholar 

  35. Yamaoka K, Nakagawa T, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 6:165–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank NHG small innovative grant and MAP-RISE program for their support of the study.

Conflict of interest

All authors express no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon-Cher Goh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, WP., Wang, LZ., Tham, LS. et al. A phase I study of docetaxel with ketoconazole modulation in patients with advanced cancers. Cancer Chemother Pharmacol 62, 243–251 (2008). https://doi.org/10.1007/s00280-007-0598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0598-1

Keywords

Navigation