Skip to main content
Log in

Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile?

A review of theoretical and practical considerations

  • Review
  • Pharmacokinetics, Dose Normalisation, Surface Area
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Benedict FG (1938) Vital energetics: a study in comparative basal metabolism. Carnegie Institute, Washington D. C.

    Google Scholar 

  2. Behrman RE, Vaughan VC, Nelson WE (eds) (1983) Nelson's textbook of paediatrics, 13th edn. W. B. Saunders, Philadelphia

    Google Scholar 

  3. Brody S, Proctor RC, Ashworth US (1934) Basar metabolism, endogenous nitrogen, creatinine, and sulphur excretions as functions of body weight. Univ Mo Agric Exp Sta Res Bull 220: 1–40

    Google Scholar 

  4. Calder WA, Braun EJ (1983). Scaling of osmotic regulation in mammals and birds. Am J Physiol 244: 601–606

    Google Scholar 

  5. Calvert AH, Newell DR, Gumbrell LA (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7: 1748–1756

    Google Scholar 

  6. Chabner BA (1990) Clinical statistics for cancer treatment: the role of drugs. In: Chabner BA, Collins JM (eds) Cancer chemotherapy: principles and practice. J. B. Lippincott, Philadelphia, pp 1–15

    Google Scholar 

  7. Collins JM, Zaharko DS, Dedrick RL, Chabner BA (1986) Potential roles for preclinical pharmacology in phase I clinical trials. Cancer Treat Rep 70: 73–81

    Google Scholar 

  8. Crawford JD, Terry ME, Rourke GM (1950) Simplification of drug dosage calculation by application of the surface area principle. Paediatrics 5: 783–790

    Google Scholar 

  9. Davies PSW, Cole TJ, Lucas A (1989) Adjusting energy expenditure for body weight in early infancy. Eur J Clin Nutr 43: 641–645

    Google Scholar 

  10. Dawson WT (1940) Relations between age and weight and dosage of drugs. Ann Intern Med 13: 1594–1613

    Google Scholar 

  11. Dubois E (1936) Basal metabolism in health and disease. Lea and Fabiger, Philadelphia

    Google Scholar 

  12. Dubois D, Dubois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17: 863–871

    Google Scholar 

  13. Egorin MJ, Van Echo DA, Olman DA, Whiteacre MY, Forrest A, Aisner J (1985) Prospective validation of a pharmacologically based dosing scheme for thecis-diamminedichloroplatinum(II) analogue diamminecyclobutanediacarboxy platinum. Cancer Res 45: 6502–6506

    Google Scholar 

  14. EORTC Pharmacokinetics and Metabolism Group (1987) Pharmacokinetically guided dose escalation in phase I clinical trials. Eur J Cancer 23: 1083–1087

    Google Scholar 

  15. Forfar JO, Arneil GC (eds) (1978) Texbook of paediatrics, 2nd edn. Churchill Livingston, Edinburgh

    Google Scholar 

  16. Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE (1966) Quantitative comparison of toxicity to anticancer agents in mouse, rat, hamster, dog, monkey and man. Cancer Chemother Rep 50: 219–244

    Google Scholar 

  17. Gianni L, Vigani L, Surbone A (1990) Pharmacology and clinical toxicity of 4′-iodo-4′-deoxyrubicin: an example of successful application of pharmacokinetics to dose escalation in phase I trials. J Natl Cancer Inst 82: 469–477

    Google Scholar 

  18. Gibson RS (1990) Principles of nutritional assessment. Oxford University Press, Oxford

    Google Scholar 

  19. Graham MA, Workman P (1992) The impact of pharmacokinetically guided dose escalation in phase I clinical trials: critical evaluation and recommendations for future studies. Ann Oncol 3: 339–347

    Google Scholar 

  20. Grieshaber CK (1991) Prediction of human toxicity of new antineoplastic drugs from studies in animals. In: Powis G, Hacker MP (eds) The toxicity of anticancer drugs. Pergamon, New York, pp 10–27

    Google Scholar 

  21. Grochow LB, Baraldi C, Noe D (1990) Is dose normalisation to weight or body surface area useful in adults? J Natl Cancer Inst 82: 323–324

    Google Scholar 

  22. Hale JP, Lilleyman JS (1991) Importance of 6-mercaptopurine dose in lymphoblastic leukaemia. Arch Dis Child 66: 462–466

    Google Scholar 

  23. Hannon RR, cited in Boothby WM, Sandiford RB (1921) Nomographic charts for the calculation of the metabolic rate by the gasometer method. Boston Med Surg J 185: 337–354

    Google Scholar 

  24. Hayder S, Lafolie P, Bjork O, et al (1989) 6-Mercaptopurine levels in children with acute lymphoblastic leukaemia: relation to relapse risk and myelotoxicity. Ther Drug Monit 11: 617–622

    Google Scholar 

  25. Herber S, Lennard L, Lilleyman JS, et al (1982) 6-Mercaptopurine: apparent lack of relation between prescribed dose and biological effect in children with leukaemia. Br J Cancer 46: 138–141

    Google Scholar 

  26. Heusner AA (1985) Body size and energy metabolism. Annu Rev Nutr 5: 267–293

    Google Scholar 

  27. Homan ER (1972) Quantitative relationship between toxic doses of antitumor chemotherapeutic agents in animals and man. Cancer Chemother Rep 3: 13–19

    Google Scholar 

  28. Katzung BG (1984) Basic and clinical pharmacology, 2nd edn. Large Medical Publications, Los Altos, California, p 268

    Google Scholar 

  29. Kleiber M (1932) Body size and metabolism. Hilgardia 6: 315–333

    Google Scholar 

  30. Lawrence M (1988) Predicting energy requirements. Eur J Clin Nutr 42: 919–927

    Google Scholar 

  31. Lennard L, Lilleyman JS, Van Loan J, et al (1990) Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336: 225–228

    Google Scholar 

  32. Martin AD, Drinkwater DT, Clarys JP (1984) Human body surface area: validation of formulae based on a cadaver study. Hum Biol 56: 475–488

    Google Scholar 

  33. Mitchell D, Strydon NB, Van Graun CH, Van der Walt WH (1971) Human surface area: comparison of the Dubois formula with direct photometric measurement. Pflugers Arch 325: 188–190

    Google Scholar 

  34. Mordenti J (1986) Dosage regimen design for pharmaceutical studies conducted in animals. J Pharm Sci 75: 852–857

    Google Scholar 

  35. Newell DR (1990) Phase I clinical studies with cytotoxic drugs: pharmacokinetic and pharmacodynamic considerations. Br J Cancer 61: 189–191

    Google Scholar 

  36. Pinkel D (1958) The use of body surface area as a criterion of drug dosage in cancer chemotherapy. Cancer Res 18: 853–856

    Google Scholar 

  37. Poczopko P (1979) Metabolic rate and body size in adult growing homeotherms. Acta Theriol 24: 125–136

    Google Scholar 

  38. Ratain MJ, Mick R, Schilsky RL, Vogelzong NJ, Berezin F (1991) Pharmacologically based dosing of etoposide: a means of safely increasing dose intensity. J Clin Oncol 9: 1480–1486

    Google Scholar 

  39. Richmond CR, Langham WH, Trujillo TT (1962) Comparative metabolism of tritiated water by mammals. J Cell Comp Physiol 59: 45–55

    Google Scholar 

  40. Rozencweig M, Von Hoff DD, Staquet MJ, Schein PS, Penta JS, Goldin A, Muggia FM, Freireich EJ, De Vita VT (1981) Animal toxicology for early clinical trials with anticancer agents. Cancer Clin Trials 4: 21–28

    Google Scholar 

  41. Rubner M (1883) Über den Einfluß der Körpergröße auf Stoff- und Kraftwechsel. Z Biol 19: 535–562

    Google Scholar 

  42. Sarrus F, Rameaux JF (1839) Report sur un memorie addresse a L'Academie Royale de Medecine. Bull Acad Med Paris 3: 1094–1100

    Google Scholar 

  43. Schein PS, Davids RD, Carter S, Newman J, Schein DR, Rall DP (1970) The evaluation of anticancer drugs in dogs and monkeys for the prediction of qualitative toxicities in man. Clin Pharmacol Ther 11: 3–40

    Google Scholar 

  44. Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  45. Travis CC, White RK (1988) Interspecific scaling of toxicity data. Risk Anal 8: 119–125

    Google Scholar 

  46. Turcotte G (1979) Erroneous nomograms for body surface area. N Engl J Med 300: 1339

    Google Scholar 

  47. WHO (1983) Measuring change in nutrition status. WHO, Geneva

    Google Scholar 

  48. Wieser W (1984) A distinction must be made between ontogeny and phylogeny of metabolism in order to understand the mass exponent of energy metabolism. Respir Physiol 55: 1–9

    Google Scholar 

  49. Workman P, Gianni L, McVie JG (1993) Relevance of pharmacology in clinical oncology practice. Annals of Oncology (in press)

  50. Zuccaro P, Guandalinis Pacific R, Pichinis Di Martino L, Guiducci M, Giuliano M, Di Tullio MT, Mantovani MP (1991) Fat body mass and pharmacokinetics of oral 6-mercaptopurine in children with acute lymphoblastic leukaemia. Ther Drug Monit 13: 37–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, J.J., Workman, P. Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile?. Cancer Chemother. Pharmacol. 32, 411–418 (1993). https://doi.org/10.1007/BF00685883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685883

Keywords

Navigation