Skip to main content

Advertisement

Log in

Ketotifen reverses MDR1-mediated multidrug resistance in human breast cancer cells in vitro and alleviates cardiotoxicity induced by doxorubicin in vivo

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of the antihistamine ketotifen on multidrug resistance in human breast cancer cells and doxorubicin toxicity in mice.

Methods

Clonogenicity assays were used to test the effect of ketotifen on human multidrug resistant breast cancer cell lines exposed to chemotherapeutic agents. Flow cytometry was used to measure accumulation of doxorubicin in cells. Fluorimetry was used to measure accumulation of doxorubicin in cardiac tissues. Histological analysis and toxicity studies in mice were used to test the effect of ketotifen on doxorubicin-induced toxicity.

Results

Ketotifen was found to restore the sensitivity of P-glycoprotein-overexpressing multidrug-resistant MCF-7/adr cells to doxorubicin, mitoxantrone, VP-16 and vinblastine, but not to methotrexate or camptothecin. Ketotifen, however, was unable to restore sensitivity of BCRP-overexpressing MCF-7/mx cells or MRP-overexpressing MCF-7/vp cells to mitoxantrone or VP-16, respectively. In vivo, pretreatment of mice with ketotifen caused an increased accumulation of doxorubicin in cardiac tissue, consistent with a block in drug clearance. However, unlike verapamil, ketotifen pretreatment did not enhance doxorubicin toxicity but in fact provided protection, both at the level of cardiac tissue damage and in terms of survival.

Conclusions

Taken together, these observations show that ketotifen is unique in its ability both to reverse multidrug resistance due to P-glycoprotein overexpression and to provide cardioprotection to doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6A–D.
Fig. 7.

Similar content being viewed by others

References

  1. Arceci RJ (2000) Can multidrug resistance mechanisms be modified? Br J Haematol 110:285

    Article  CAS  PubMed  Google Scholar 

  2. Bartlett NL, Lum BL, Fisher GA, Brophy NA, Ehsan MN, Halsey J, Sikic BI (1994) Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 12:835

    PubMed  Google Scholar 

  3. Bartoli Klugman F, Decorti G, Candussio L, Mallardi F, Grill V, Zweyer M, Baldini L (1988) Effect of ketotifen on adriamycin toxicity: role of histamine. Cancer Lett 39:145

    PubMed  Google Scholar 

  4. Birtle AJ (2000) Anthracyclines and cardiotoxicity. Clin Oncol 12:146

    Article  CAS  Google Scholar 

  5. Blatt J (1997) ICRF-187 as a cardioprotectant in children treated with anthracyclines. Pediatr Hematol Oncol 14:iii

    CAS  Google Scholar 

  6. Cole SP, Deeley RG (1998) Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. Bioessays 20:931

    Article  CAS  PubMed  Google Scholar 

  7. Dalton WS, Crowley JJ, Salmon SS, Grogan TM, Laufman LR, Weiss GR, Bonnet JD (1995) A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer 75:815

    CAS  PubMed  Google Scholar 

  8. Decorti G, Candussio L, Klugmann FB, Strohmayer A, Mucci MP, Mosco A, Baldini L (1997) Adriamycin-induced histamine release from heart tissue in vitro. Cancer Chemother Pharmacol 40:363

    Article  CAS  PubMed  Google Scholar 

  9. Dorr RT (1996) Cytoprotective agents for anthracyclines. Semin Oncol 23:23

    CAS  Google Scholar 

  10. Ford JM (1995) Modulators of multidrug resistance. Preclinical studies. Hematol Oncol Clin North Am 9:337

    CAS  PubMed  Google Scholar 

  11. Franzius D, Hoth M, Penner R (1994) Non-specific effects of calcium entry antagonists in mast cells. Pflugers Arch 428:433

    CAS  PubMed  Google Scholar 

  12. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727

    Article  CAS  PubMed  Google Scholar 

  13. Giaccone G, Linn SC, Welink J, Catimel G, Stieltjes H, van der Vijgh WJ, Eeltink C, Vermorken JB, Pinedo HM (1997) A dose-finding and pharmacokinetic study of reversal of multidrug resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 3:2005

    CAS  PubMed  Google Scholar 

  14. Gommerman JL, Berger SA (1998) Protection from apoptosis by steel factor but not interleukin-3 is reversed through blockade of calcium influx. Blood 91:1891

    CAS  PubMed  Google Scholar 

  15. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385

    CAS  PubMed  Google Scholar 

  16. Horenstein MS, Vander Heide RS, L'Ecuyer TJ (2000) Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol Genet Metab 71:436

    Article  CAS  PubMed  Google Scholar 

  17. Lehnert M (1998) Chemotherapy resistance in breast cancer. Anticancer Res 18:2225

    CAS  PubMed  Google Scholar 

  18. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40:S3

    Article  CAS  PubMed  Google Scholar 

  19. Mross K, Bohn C, Edler L, Jonat W, Queisser W, Heidemann E, Goebel M, Hossfeld DK (1993) Randomized phase II study of single-agent epirubicin ± verapamil in patients with advanced metastatic breast cancer. An AIO clinical trial. Arbeitsgemeinschaft Internistische Onkologie of the German Cancer Society. Ann Oncol 4:45

    CAS  Google Scholar 

  20. Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA (1999) Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91:429

    PubMed  Google Scholar 

  21. Scheper RJ, Broxterman HJ, Scheffer GL, Kaaijk P, Dalton WS, van Heijningen TH, van Kalken CK, Slovak ML, de Vries EG, van der Valk P, et al (1993) Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res 53:1475

    CAS  PubMed  Google Scholar 

  22. Schneider E, Horton JK, Yang CH, Nakagawa M, Cowan KH (1994) Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res 54:152

    CAS  PubMed  Google Scholar 

  23. Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L, Chen G (1997) Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 40:S13

    CAS  PubMed  Google Scholar 

  24. Soboloff J, Berger SA (2002) Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells. J Biol Chem 277:13812

    Article  CAS  PubMed  Google Scholar 

  25. Soboloff J, Zhang Y, Minden M, Berger SA (2002) Sensitivity of myeloid leukemia cells to calcium influx blockade: application to bone marrow purging. Exp Hematol 30:1219

    Article  CAS  PubMed  Google Scholar 

  26. Spicer D, Arzoo K, Groshen S, et al (2000) Valspodar + paclitaxel in advanced breast cancer: a California Cancer Consortium phase II randomized trial (abstract 696). Proc ASCO 19:179a

    Google Scholar 

  27. Sridhar R, Dwivedi C, Anderson J, Baker PB, Sharma HM, Desai P, Engineer FN (1992) Effects of verapamil on the acute toxicity of doxorubicin in vivo. J Natl Cancer Inst 84:1653

    CAS  PubMed  Google Scholar 

  28. Tan B, Piwnica-Worms D, Ratner L (2000) Multidrug resistance transporters and modulation. Curr Opin Oncol 12:450

    Article  CAS  PubMed  Google Scholar 

  29. Trock BJ, Leonessa F, Clarke R (1997) Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst 89:917

    Article  CAS  PubMed  Google Scholar 

  30. Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 84:3004

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Crump M, Berger SA (2002) Purging of contaminating breast cancer cells from hematopoietic progenitor cell preparations using activation enhanced cell death. Breast Cancer Res Treat 72:265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ian Tannock for providing the MCF-7/adr cell line and Dr. Erasmus Schneider for providing the MCF-7/mx and MCF-7/vp cell lines. We also thank Dr. Jagdish Butany (Toronto) for assisting with the histological review of the slides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Berger.

Additional information

This work was supported by grants from the National Cancer Institute of Canada and the Leukemia Research Fund of Canada to S.A.B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Berger, S.A. Ketotifen reverses MDR1-mediated multidrug resistance in human breast cancer cells in vitro and alleviates cardiotoxicity induced by doxorubicin in vivo. Cancer Chemother Pharmacol 51, 407–414 (2003). https://doi.org/10.1007/s00280-003-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0600-5

Keywords

Navigation