Skip to main content

Advertisement

Log in

Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

In this paper, based on the analysis of a long-term energy balance monitoring programme, a Bowen ratio-based method (BR) was proposed to resolve the lack of closure of the eddy covariance technique to obtain reliable sensible (H) and latent heat fluxes (λE). Evapotranspiration (ET) values determined from the BR method (ETc,corr) were compared with the upscaled transpiration data determined by the sap flow heat pulse (HP) technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level. Using the BR-corrected λE fluxes, a crop ET model implementing the Penman–Monteith approach, where the canopy surface resistance was determined from standard microclimatic variables, was applied to determine the crop coefficient values. The performance of the model was evaluated by comparing it with the sap flow HP data. The results of the comparison were satisfactory, and therefore, the proposed methodology may be considered valid for characterizing the ET process for orange orchards grown in a Mediterranean climate. By contrast to reports in the FAO 56 paper, the crop growth coefficient of the orange orchard being studied was not constant throughout the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration, guidelines for computing crop water requirements. Paper No. 56, Rome

  • Arya SP (1988) Introduction to micrometeorology. Academic Press, London

    Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Adv Ecol Res 30:114–175

    Google Scholar 

  • Ayars JE, Johnson RS, Phene CJ et al (2003) Water use by drip-irrigated late-season peaches. Irrig Sci 22:94

    Article  Google Scholar 

  • Azevedo PV, Silva BB, da Silva VPR (2003) Water requirements of irrigated mango orchards in northeast Brazil. Agric Water Manage 58:241–254

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing ecosystem carbon balance: problems and prospects of the Eddy covariance technique. Glob Change Biol 9:479–492

    Article  Google Scholar 

  • Barr AG, King KM, Gillespie TJ, denHartog G, Neumann HH (1994) A comparison of Bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest. Bound Layer Meteorol 71:21–41

    Article  Google Scholar 

  • Bethenod O, Katerji N, Goujet R, Bertolini JM, Rana G (2000) Determination and validation of corn crop transpiration by sap flow measurement under field conditions. Theor Appl Climatol 67:153–160

    Article  Google Scholar 

  • Blanken PD, Black TA, Yang PC, Newmann HH, Nesic Z, Staebler R, denHartog G, Novak MD, Lee X (1997) Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J Geophys Res 102(D24):28915–28928

    Article  Google Scholar 

  • Brutsaert W (1988) Evaporation into the atmosphere. D Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Burman RD, Wright JL, Nixon PR, Hill RW (1980) Irrigation management-water requirements and water balance. In: Irrigation, challenges of the 80’s. Proceedings of the second national irrigation symposium, American Society of Agricultural Engineers, St. Joseph, MI, pp 141–153

  • Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Castellví F, Consoli S, Papa R (2012) Sensible heat flux estimates using two different methods based on Surface renewal analysis. A study case over an orange orchard in Sicily. Agric For Meteorol 152:58–64

    Article  Google Scholar 

  • Cohen Y (1991) Determination of orchard water requirement by a combined trunk sap flow and meteorological approach. Irrig Sci 12(2):93–98

    Article  Google Scholar 

  • Cohen M, Girona J, Valancogne C, Ameglio T, Cruizat P, Archer P (1993) Water consumption and optimisation of the irrigation in orchards. Acta Hort 335:34–357

    Google Scholar 

  • Consoli S, O’Connell N, Snyder R (2006) Estimation of evapotranspiration of different-sized navel-orange tree orchards using energy balance. J Irrig Drain Eng 132(1):2–8

    Article  Google Scholar 

  • de Teixeira AHC, Bastiaanssen WGM, Moura MSB, Soares JM, Ahmad MD, Bos MG (2008) Energy and water balance measurements for water productivity analysis in irrigated mango trees, Northeast Brazil. Agric For Meteorol 148:1524–1537

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1975) Guidelines for predicting crop water requirements. Irrigation and Drainage Paper no. 24, FAO-ONU, Rome, Italy

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements, FAO-ONU, Rome. Irrigation and Drainage Paper no. 24 (rev.)

  • El Maayar M, Chen JM, Price DT (2008) On the use of field measurements of energy fluxes to evaluate land surface models. Ecol Model 214:293–304

    Article  Google Scholar 

  • Finnigan JJ (2004) A revaluation of long-term flux measurement techniques. Part II: coordinate systems. Bound Layer Meteorol 113:1–41

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, New York

    Google Scholar 

  • Green SR, Clothier B (1988) Water use of kiwifruit vines and apple trees by the heat-pulse technique. J Exp Bot 39:115–123

    Article  Google Scholar 

  • Green SR, McNaughton KG, Clothier BE (1989) Observations of night-time water use in kiwifruit vines and apple trees. Agric For Meteorol 48:251–261

    Article  Google Scholar 

  • Green S, Clothier B, Jardine B (2003) Theory and practical application of heat pulse to measure sap flow. Agron J 95:1371–1379

    Article  Google Scholar 

  • Guo JX, Bian LG, Dai YJ (2009) Multiple time scale evaluation of the energy balance during the maize growing season, and a new reason of energy imbalance. Sci China Ser D Earth Sci 52:108–117

    Article  Google Scholar 

  • Hamdy A (1999) water resources in the Mediterranean region: from ideas to action. In: Background documentation for thematic session. Consultation of experts from MENA region on: World Water Vision-Water for Food and Rural Development. CIHEAM-IAMB, Valenzano, 27–29 May 1999, pp 1–23

  • Han H, Felker P (1997) Field validation of water-use efficiency of the CAM plant Opuntia ellisiana in south Texas. J Arid Environ 36:133–148

    Article  Google Scholar 

  • Heilman JL, McInnes KJ, Gesch RW, Lacano RJ, Savage MJ (1996) Effects of trellising on the energy balance of a vineyard. Agric For Meteorol 81:79–93

    Article  Google Scholar 

  • Jara J, Stockle CO, Kjelgaard J (1998) Measurement of evapotranspiration and its components in a corn (Zea Mays L) field. Agric For Meteorol 92:131–145

    Article  Google Scholar 

  • Jensen ME (1968) Water consumption by agricultural plants. In: Kozlowski TT (ed) Water deficits and plant growth, vol II. Academic Press, Inc., New York, pp 1–22

    Google Scholar 

  • Ju W, Chen JM, Black TA, Barr AG, Liu J, Chen B (2006) Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agric For Meteorol 140:136–151

    Article  Google Scholar 

  • Katerji N, Perrier A (1983) Modélisation de l’évapotranspiration réelle ETR d’une parcelle de luzerne: rŏle d’un coefficient cultural. Agronomie 3(6):513–521

    Article  Google Scholar 

  • Katul G, Hsieh C-I, Bowling D, Clark K, Shurpali N, Turnipseed A, Albertson J, Tu K, Hollinger D, Evans B, Offerle B, Anderson D, Ellsworth D, Vogel C, Oren R (1999) Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Bound Layer Meteorol 93:1–28

    Article  Google Scholar 

  • Kucharik C, Barford C, El Maayar M, Wofsy SC, Monson RK, Baldocchi DD (2006) Evaluation of a dynamic global vegetation model (DGVM) at the forest stand-level: vegetation structure, phenology, and seasonal and inter-annual CO2 and H2O vapor exchange at three AmeriFlux study sites. Ecol Model 196:1–31

    Article  Google Scholar 

  • Kustas WP, Prueger JR, Humes KS, Starks PJ (1999) Estimation of surface heat fluxes at field scale using surface layer versus mixed layer atmospheric variables with radiometric temperature observations. J Appl Meteorol 38:224–238

    Article  Google Scholar 

  • Liu H, Randerson JT, Lindfors J, Massman W, Foken T (2006) Consequences of incomplete surface energy balance closure for CO2 fluxes from open-path CO2/H2O infrared gas analyzers. Bound Layer Meteorol 120:65–85

    Article  Google Scholar 

  • Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Ocean Technol 15:416–429

    Article  Google Scholar 

  • Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Universität Bayreuth, Abt.Mikrometeorologie, Arbeitsergebnisse 26-44. http://www.geo.unibayreuth.de/mikrometeorologie/ARBERG

  • Mauder M, Foken T, Clement R, Elbers JAEW, Grünwald T, Heusinkveld B, Kolle O (2007) Quality control of CarboEurope flux data—part 2: inter-comparison of eddy-covariance software. Biogeosciences 5:4067–4099

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organism. Proceedings of the XIX symposium on society for experimental biology. Academic Press, New York, pp 205–234

  • Moreno F, Ferna′ndez JE, Clothier BE, Green SR (1996) Transpiration and root water uptake by olive trees. Plant Soil 184:85–96

    Article  CAS  Google Scholar 

  • Moreshet S, Cohen Y, Fuchs M (1983) Response of mature "Shamouti" orange trees to irrigation of different soil volumes at similar levels of available water. Irr Sci 3:223–236

    Google Scholar 

  • Moriana A, Villalobos FJ, Fereres E (2002) Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant Cell Environ 25(3):395–405

    Article  Google Scholar 

  • Motisi A, Consoli S, Rossi F, Minacapilli M, Cammalleri C, Papa R, Rallo G, D’urso G (2012) Eddy covariance and sap flow measurement of energy and mass exchange of woody crops in a Mediterranean environment. In: 8th international workshop on sap flow. Volterra (Italy), May 8–12

  • Oncley SP, Foken T, Vogt R et al (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Bound Layer Meteorol 123:1–28

    Article  Google Scholar 

  • Orgaz F, Testi L, Villalobos FJ, Fereres E (2006) Water requirements of olive orchards. II. Determination of crop coefficients for irrigation scheduling. Irrig Sci 24(2):77–84

    Article  Google Scholar 

  • Paco TA, Ferreira MI, Conceicao N (2006) Peach orchard evapotranspiration in a sandy soil: comparison between eddy covariance measurements and estimates by the FAO 56 approach. Agric Water Manag 85(3):305–313

    Article  Google Scholar 

  • Rana G, Katerji N, de Lorenzi F (2005) Measurements and modelling of evapotranspiration of irrigated citrus orchard under Mediterranean conditions. Agric For Meteorol 128:199–209

    Article  Google Scholar 

  • Sammis TW, Mexal JG, Miller D (2004) Evapotranspiration of flood-irrigated pecans. Agric Water Manage 69:179–190

    Google Scholar 

  • Smith DM, Allen SJ (1996) Measurement of sap flow in plant stems. J Exp Bot 47:1833–1844

    Article  CAS  Google Scholar 

  • Snyder RL, O’Connell NV (2007) Crop coefficients for microsprinkler-irrigated, clean-cultivated, mature citrus in an arid climate. J Irrig Drain Eng 133(1):43–52

    Article  Google Scholar 

  • Stanghellini C, Bosma AH, Gabriels PCJ, Werkoven C (1990) The water consumption of agricultural crops: how crop coefficient are affected by crop geometry and microclimate. Acta Hortic 278:509–516

    Google Scholar 

  • Swanson RH, Whitfield DWA (1981) A numerical analysis of heat-pulse velocity theory and practice. J Exp Bot 32:221–239

    Article  Google Scholar 

  • Tarantino E, Onofrii M (1991) Determinazione dei coefficienti colturali mediante lisimetri. Bonifica 7:119–136 (in Italian)

    Google Scholar 

  • Testi L, Villalobos FJ, Orgaz F (2004) Evapotranspiration of a young irrigated olive orchard in southern Spain. Agric For Meteorol 121:1–18

    Article  Google Scholar 

  • Testi L, Orgaz F, Villalobos FJ (2006) Variations in bulk canopy conductance of an irrigated olive (Olea europaea L.) orchard. Environ Exp Bot 55:15–28

    Article  Google Scholar 

  • Trambouze W, Bertuzzi P, Voltz M (1998) Comparison of methods for estimating actual evapotranspiration in a row cropped vineyard. Agric For Meteorol 91:193–208

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM et al (2000) Correcting eddy-covariance flux underestimates over a grass land. Agric For Meteorol 103:279–300

    Article  Google Scholar 

  • Villalobos FJ, Orgaz F, Testi L, Fereres E (2000) Measurement and modeling of evapotranspiration of olive (Olea europea L.) orchards. Agric For Meteorol 13:155–163

    Google Scholar 

  • Villalobos FJ, Testi L, Moreno-Perez MF (2009) Evaporation and canopy conductance of citrus orchards. Agric Water Manag 96:565–573

    Article  Google Scholar 

  • Williams DG, Cable W, Hultine K, Yepez EA, Er-Raki S, Hoedjes JCB, Boulet G, de Bruin HAR, Chehbouni A, Timouk F (2003) Suivi de la repartition de l’evapotranspiration dans une oliveraie (Olea europaea L.) a l’aide des techniques de l’eddy covariance, des flux de seve et des isotopes stables. Vemes Journees de l’Ecologie Fonctionnelle, 12 au 14 Mars 2003 a Nancy

  • Wilson K, Goldstein A, Falge E et al (2002) Energy balance closure at fluxnet sites. Agric For Meteorol 113:223–243

    Article  Google Scholar 

  • Wright JL (1982) New evapotranspiration crop coefficients. J Irrig Drain Div ASCE 108:57–74

    Google Scholar 

  • Wullschleger SD, Wilson KB, Hanson PJ (2000) Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agric For Meteorol 104:157–168

    Article  Google Scholar 

  • Zhang H, Simmonds LP, Morison JIL, Payne D (1997) Estimation of transpiration by single trees: comparison of sap flow with combination equation. Agric For Meteorol 87:155–169

    Article  Google Scholar 

  • Zhang Y, Grant RF, Flanagan LB, Wang S, Verseghy DL (2005) Modelling CO2 and energy exchanges in a northern semiarid grassland using the carbon- and nitrogen-coupled Canadian Land Surface Scheme (C-CLASS). Ecol Model 181:591–614

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out under the auspices of the Project Innovazioni e strumenti per l’adattamento dell’agricoltura ai cambiamenti climatici (ISAACC) (Innovations and tools for adapting agriculture to climatic change) under grant no. 594/2011 of the Sicilian Region. The authors wish to thank Azienda Tribulato (Lentini, SR) for its hospitality. The authors are also grateful to the Agrometeorological Service (SIAS) of the Sicilian Region and to CSEI Catania for their cooperation and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Consoli.

Additional information

Communicated by J. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Consoli, S., Papa, R. Corrected surface energy balance to measure and model the evapotranspiration of irrigated orange orchards in semi-arid Mediterranean conditions. Irrig Sci 31, 1159–1171 (2013). https://doi.org/10.1007/s00271-012-0395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-012-0395-4

Keywords

Navigation