Skip to main content
Log in

Daily crop evapotranspiration and diurnal dynamics of the surface energy balance of a drip-irrigated blueberry (Vaccinium corymbosum) orchard

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Accurate estimation of crop evapotranspiration (\(ET_{c}\)) considering global warming is a key aspect to optimize water application, yield and fruit quality for sustainable blueberry production. This study quantifies daily crop \(ET_{c}\), diurnal dynamics of the surface energy balance (SEB) and the crop factor (CF) of a drip-irrigated blueberry (Vaccinium corymbosum) orchard field. CF is defined as the ratio of \(ET_{c}\) and reference ET. \(ET_{c}\) and the SEB were measured using an Eddy Covariance (EC) system every 30 min during four growing seasons. Results show maximum values of available energy, Net Radiation (Rn) minus soil heat flux (G), reached 18 MJ m–2 d–1, while that the sum of turbulent fluxes extended to 17 MJ m–2 d–1. Maximum values of latent heat (\(\lambda E\)) normally occur on November–December from 10 to 11 MJ m–2 d–1. The correlation between Rn between crop rows and Rn above the crop canopy-soil surface was 0.73 during all growing seasons. G below the canopy represents 5% of Rn above the crop canopy-soil surface. During this study, \(ET_{c}\) reached up to 5.0 \(mm\, d^{-1}\) when \(ET_{o}\) was 7 \(mm \,d^{-1}\). Maximum \(ET_{c}\) values occur during December. Weekly specific CF varied from 0.5 to 0.8 from October to March. CF showed no significant variation year to year suggesting that they could be used by farmers to better predict water demand and improve water use efficiency. To our knowledge, there are no previous studies at a field’s scale documenting all components of the daily SEB and its diurnal dynamics over blueberry orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M et al (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300(9):D05109

    Google Scholar 

  • Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)-model. J Irrigat Drainage Eng 133:380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)

    Article  Google Scholar 

  • Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricult Water Manag 98(6):899–920

    Article  Google Scholar 

  • Almonacid F (2018) Southern Chile as a part of global value chains, 1985–2016: Blueberry production and the regional economy. Ager 2018(25):131–158. https://doi.org/10.4422/ager.2018.08

    Article  Google Scholar 

  • ASCE-EWRI (2005) The ASCE Standardized Reference Evapotranspiration Equation. ASCE-EWRI Standardization of Reference Evapotranspiration Task Committee, Report. http://www.kimberly.uidaho.edu/water/asceewri/. Accessed 6 June 2023

  • Bastiaanssen WGM, Meneti M, Feddes RA, Holtslag A (1998) A remote sensing surface energy balance algorithm for land (SEBAL). Formulation. J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Beaudry RM, Moggia CE, Retamales JB, Hancock JF (1998) Quality of’ivanhoe’and’bluecrop’blueberry fruit transported by air and sea from chile to north america. Hort Sci 33(2):313–317

    Google Scholar 

  • Beltrán JA (2018) Climate change in chile: climatic trends and farmer’s perceptions. Eu-topías: revista de interculturalidad, comunicación y estudios europeos 1(16):5–23

    Google Scholar 

  • Breiman L (2001) Random Forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bryla DR (2011) Crop evapotranspiration and irrigation scheduling in blueberry. Evapotranspiration-From measurements to agricultural and environmental applications Intech, Rijeka, Croatia pp 167–186

  • Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20(12):1527–1532

    Article  Google Scholar 

  • Campos I, Neale CMU, Calera A, Balbontín C, González-Piqueras J (2010) Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agricult Water Manag 98(1):45–54

    Article  Google Scholar 

  • Carrasco-Benavides M, Ortega-Farías S, Lagos LO, Kleissl J, Morales L, Poblete-Echeverría C, Allen RG (2012) Crop coefficients and actual evapotranspiration of a drip-irrigated Merlot vineyard using multispectral satellite images. Irrigat Sci 30(6):485–497

    Article  Google Scholar 

  • Cawse-Nicholson K, Anderson MC, Yang Y, Yang Y, Hook SJ, Fisher JB, Halverson G, Hulley GC, Hain C, Baldocchi DD, Brunsell NA, Desai AR, Griffis TJ, Novick KA (2021) Evaluation of a conus-wide ecostress disalexi evapotranspiration product. IEEE J Selected Top Appl Earth Observat Remote Sens 14:10117–10133. https://doi.org/10.1109/JSTARS.2021.3111867

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Month Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Chow WT, Volo TJ, Vivoni ER, Jenerette GD, Ruddell BL (2014) Seasonal dynamics of a suburban energy balance in phoenix, arizona. Int J Climatol 34(15):3863–3880

    Article  Google Scholar 

  • DGA (2004) Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivo de calidad. Cuenca del río Itata Santiago, Chile

    Google Scholar 

  • Farahani HJ, Howell TA, Shuttleworth WJ, Bausch WC (2007) Evapotranspiration: progress in measurement and modeling in agriculture. Trans Asabe 50(5):1627–1638

    Article  Google Scholar 

  • FAS-USDA (2021) Blueberries Around the Globe - Past, Present, and Future. https://www.fas.usda.gov/sites/default/files/2021-10/GlobalBlueberriesFinal_1.pdf. Accessed 6 June 2023

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Applicat 18(6):1351–1367

    Article  Google Scholar 

  • Galleguillos M, Jacob F, Prévot L, Lagacherie P, Liang S (2011) Mapping daily evapotranspiration over a Mediterranean vineyard watershed. Geosci Remote Sens Lett, IEEE 8(1):168–172

    Article  Google Scholar 

  • Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda H, Veloso-Äguila D (2019) The central chile mega drought (2010–2018): a climate dynamics perspective. Int J Climatol. https://doi.org/10.1002/joc.6219

    Article  Google Scholar 

  • Gebler S, Franssen HH, Pütz T, Post H, Schmidt M, Vereecken H (2015) Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrol Earth Syst Sci 19(5):2145

    Article  Google Scholar 

  • Holzapfel EA, Hepp RF, Mariño MA (2004) Effect of irrigation on fruit production in blueberry. Agricult Water Manag 67(3):173–184

    Article  Google Scholar 

  • Hunsaker DJ, Pinter PJ Jr, Barnes EM, Kimball BA (2003) Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrigat Sci 22(2):95–104

    Article  Google Scholar 

  • Hunt JF, Honeycutt CW, Starr G, Yarborough D (2008) Evapotranspiration rates and crop coefficients for lowbush blueberry (Vaccinium angustifolium). Int J Fruit Sci 8(4):282–298

    Article  Google Scholar 

  • Kaimal J, Gaynor J (1991) Another look at sonic thermometry. Boundary-Layer Meteorol 56(4):401–410

    Article  Google Scholar 

  • Keen B, Slavich P (2012) Comparison of irrigation scheduling strategies for achieving water use efficiency in highbush blueberry. New Zealand J Crop Horticultural Sci 40(1):3–20

    Article  Google Scholar 

  • Kljun N, Calanca P, Rotach M, Schmid HP (2015) A simple two-dimensional parameterisation for flux footprint prediction (ffp). Geosci Model Develop 8(11):3695

    Article  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. https://doi.org/10.1038/nature16467

    Article  CAS  PubMed  Google Scholar 

  • Leuning R (2004) Measurements of trace gas fluxes in the atmosphere using eddy covariance: Wpl corrections revisited. Handbook Micrometeorol. Springer, pp 119–132

    Google Scholar 

  • Lima JRdS, Antonino ACD, Lira CABdO, Souza ESd, Silva IdFd (2011) Balanço de energia e evapotranspiração de feijão caupi sob condições de sequeiro. Revista Ciência Agronômica 42(1):65–74

    Article  Google Scholar 

  • Marino G, Zaccaria D, Lagos LO, Souto C, Kent ER, Grattan SR, Shapiro K, Sanden BL, Snyder RL (2021) Effects of salinity and sodicity on the seasonal dynamics of actual evapotranspiration and surface energy balance components in mature micro-irrigated pistachio orchards. Irrigat Sci 39(1):23–43

    Article  Google Scholar 

  • Marsal J, Girona J, Casadesus J, Lopez G, Stöckle CO (2013) Crop coefficient (K c) for apple: comparison between measurements by a weighing lysimeter and prediction by CropSyst. Irrigat Sci 31(3):455–463

    Article  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricult Forest Meteorol 169:122–135

    Article  Google Scholar 

  • Mauder M, Genzel S, Fu J, Kiese R, Soltani M, Steinbrecher R, Zeeman M, Banerjee T, De Roo F, Kunstmann H (2018) Evaluation of energy balance closure adjustment methods by independent evapotranspiration estimates from lysimeters and hydrological simulations. Hydrol Process 32(1):39–50

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37(1–2):17–35

    Article  Google Scholar 

  • NETAFIM (2020) How to water blueberries - blueberry drip irrigation. https://www.netafimusa.com/agriculture/solutions-for-your-crop/blueberries/. Accessed 6 June 2023

  • Ortega-Farias S, Espinoza-Meza S, López-Olivari R, Araya-Alman M, Carrasco-Benavides M (2021) Effects of different irrigation levels on plant water status, yield, fruit quality, and water productivity in a drip-irrigated blueberry orchard under mediterranean conditions. Agricult Water Manag. https://doi.org/10.1016/j.agwat.2021.106805

    Article  Google Scholar 

  • Pabón-Caicedo JD, Arias PA, Carril AF, Espinoza JC, Borrel LF, Goubanova K, Lavado-Casimiro W, Masiokas M, Solman S, Villalba R (2020) Observed and projected hydroclimate changes in the andes. Front Earth Sci 8:1–29. https://doi.org/10.3389/feart.2020.00061

    Article  Google Scholar 

  • Pardo N, Sánchez ML, Pérez IA, García MA (2015) Energy balance and partitioning over a rotating rapeseed crop. Agricult Water Manag 161:31–40

    Article  Google Scholar 

  • Parker L, Pathak T, Ostoja S (2021) Climate change reduces frost exposure for high-value california orchard crops. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143971

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press

    Google Scholar 

  • Pereira L, Paredes P, López-Urrea R, Hunsaker D, Mota M, Shad ZM (2021) Standard single and basal crop coefficients for vegetable crops, an update of fao56 crop water requirements approach. Agricult Water Manag 243:106196

    Article  Google Scholar 

  • Protzman E (2021) Foreign agricultural service blueberries around the globe - past, present, and future

  • R Core Team (2022) R: A language and environment for statistical computing. available online: https://www.r-project.org/. (Accessed on Nov 2022)

  • Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under mediterranean climate: a review. Eur J Agron 13(2–3):125–153

    Article  Google Scholar 

  • Retamal-Salgado J, Vásquez R, Fischer S, Hirzel J, Zapata N (2017) Decrease in artificial radiation with netting reduces stress and improves rabbit-eye blueberry (Vaccinium virgatum aiton)’ ochlockonee’ productivity. Chilean J Agricult Res 77(3):226–233

    Article  Google Scholar 

  • Retamales JB, Palma MJ, Morales YA, Lobos GA, Moggia CE, Mena CA (2014) Blueberry production in chile: current status and future developments. Rev Bras Frutic, Jaboticabal-SP 1:58. https://doi.org/10.1590/0100-2945-446/13

    Article  Google Scholar 

  • Roberts SM, Oke T, Voogt J, Grimmond C, Lemonsu A (2003) Energy storage in a european city center. In: Fifth international conference on urban climate, vol 1(05.09), p 2003

  • Romo-Muñoz R, Dote-Pardo J, Garrido-Henríquez H, Araneda-Flores J, Gil JM (2019) Blueberry consumption and healthy lifestyles in an emerging market. Span J Agricult Res. https://doi.org/10.5424/sjar/2019174-14195

    Article  Google Scholar 

  • Schmid H (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agricult Forest Meteorol 87(2–3):179–200

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt F, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26(1):81–93

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Clim 9(4):676–705

    Article  Google Scholar 

  • Slot SB, McGregor N, Peters N, Durinck A, Rijke MH (2019) Chile: Area devoted to blueberries in region of Ñuble increases by 17.3%. https://www.freshplaza.com/article/9151073/chile-area-devoted-to-blueberries-in-region-of-nuble-increases-by-17-3/

  • Souto C, Lagos O, Holzapfel E, Maskey ML, Wunderlich L, Shapiro K, Marino G, Snyder R, Zaccaria D (2019) A modified surface energy balance to estimate crop transpiration and soil evaporation in micro-irrigated orchards. Water 11(9):1747

    Article  Google Scholar 

  • Souza PJdOPd, Ribeiro A, Rocha EJPd, Farias JRB, Souza EBd (2012) Sazonalidade no balanço de energia em áreas de cultivo de soja na amazônia. Bragantia 71(4):548–557

    Article  Google Scholar 

  • Souza PJdOPd, Rodrigues JC, Sousa AMLd, Souza EBd (2018) Diurnal energy balance in a mango orchard in the northeast of pará, brazil. Revista Brasileira de Meteorologia 33(3):537–546

    Article  Google Scholar 

  • Storlie CA, Eck P (1996) Lysimeter-based crop coefficients for young highbush blueberries. Hort Sci 31(5):819–822

    Google Scholar 

  • Tempest O (2019) Chile’s water crisis. https://smartwatermagazine.com/news/smart-water-magazine/children-need-clean-water-clean-air-and-a-safe-climate. Accessed 6 June 2023

  • USDA (2000) Blueberries, pollinators, and pests with wvu. https://www.climatehubs.usda.gov/hubs/northeast/project/blueberries-pollinators-and-pests-wvu. Accessed 6 June 2023

  • Webb EK, Pearman GI, Leuning R et al (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly J Royal Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Williamson JG, Mejia L, Ferguson B, Miller P, Haman DZ (2015) Seasonal water use of southern highbush blueberry plants in a subtropical climate. Hort Technol 25(2):185–191

    Article  Google Scholar 

  • Yi C (2008) Momentum transfer within canopies. J Appl Meteorol Climatol 47(1):262–275

    Article  Google Scholar 

  • Yunusa IAM, Walker RR, Loveys BR, Blackmore DH (2000) Determination of transpiration in irrigated grapevines: comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrigat Sci 20(1):1–8

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to this report was supported by the Chilean government through the projects FONDECYT CA13I10129, FONDEF IT13I20002, FONDEF IT18I0008, ANID SEQUIA FSEQ210019, Centro de Recursos Hídricos para la Agricultura y Minería (CRHIAM) (ANID/FONDAP/15130015) and the Laboratory of Investigation and Technologies to the Water Management in the Agriculture (ItecMA\(^{2}\)). Specially acknowledge to Pedro Carrasco Peña and Pedro Carrasco Moreno from CarSol Fruit for their important advise and support during this study.

Author information

Authors and Affiliations

Authors

Contributions

O.L. designed the study, O.L., C.S., A.P., and M.KO. processed the dataset, C.S. prepared the figures. All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to L. Octavio Lagos.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagos, L.O., Souto, C., Lillo-Saavedra, M. et al. Daily crop evapotranspiration and diurnal dynamics of the surface energy balance of a drip-irrigated blueberry (Vaccinium corymbosum) orchard. Irrig Sci 42, 1–13 (2024). https://doi.org/10.1007/s00271-023-00869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-023-00869-4

Navigation