Skip to main content

Advertisement

Log in

A comparative study on pressure-induced structural transformations in a basaltic glass and melt from Ab initio molecular dynamics calculations

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Glasses are often used as models for understanding the corresponding liquid melts because they are generally assumed to share similar short and intermediate-range structural characteristics. First-principles molecular dynamics calculations have been performed to investigate the structural changes in a model basaltic (Ca22Mg14Al16Si44O148) glass at 300 K and a corresponding basaltic melt at 2500 K as a function of pressure up to 25 GPa. The results show that the local structures of the melt and glass are similar over the investigated pressure range, yet there are subtle but distinct differences. The pressure trends on the average Si–O, Ca–O, Mg–O, Al–O, O–O and Si–Si distances for the glass and melt are found to be very close. At ambient pressure, both are composed primarily of Si–O and Al-O tetrahedra. As expected, the Si–O coordination increases from four to fivefold and subsequently to sixfold. However, changes in the nearest neighbor Si–O and O–O are found to behave quite differently between the glass and melt. The most significant differences are in the distributions of the Si–O–Si and O-Si–O angles, which lead to different local structures and packing of the polyhedra. However, the differences become smaller with increased pressures indicating that caution should be exercised in the use of glasses as models for probing pressure-induced structural changes in the mantle. The calculated viscosity-pressure relationship of the basaltic melt between 0 and 25 GPa is presented and compared with available experimental data. In addition, other intrinsic properties such as the bulk modulus and sound velocity are broadly similar but not identical between the basaltic glass and melt in the broad pressure range of 0–80 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agee CB (1998) Crystal-liquid density inversions in terrestrial and lunar magmas. Phys Earth Planet Inter 107:63–74

    Article  Google Scholar 

  • Angell CA, Scamehorn CA, Phifer CC, Kadiyala RR, Cheeseman PA (1988) Ion dynamics studies of liquid and glassy silicates, and gas-in-liquid solutions. Phys Chem Miner 15:221–227

    Article  Google Scholar 

  • Bajgain S, Ghosh DB, Karki BB (2015) Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat Commun 6:8578

    Article  Google Scholar 

  • Bauchy M, Guillot B, Micoulaut M, Sator N (2013) Viscosity and viscosity anomalies of model silicates and magmas: a numerical investigation. Chem Geol 346:47

    Article  Google Scholar 

  • Behrens H, Schulze F (2003) Pressure dependence of melt viscosity in the system NaAlSi3O8-CaMgSi2O6. Am Mineral 88:1351–1363

    Article  Google Scholar 

  • Benmore CJ, Soignard E, Amin SA, Guthrie M, Shastri SD, Lee PL, Yarger JL (2010) Structural and topological changes in silica glass at pressure. Phys Rev B 81:054105

    Article  Google Scholar 

  • Cochain B, Sanloup C, Leroy C, Kono Y (2017) Viscosity of mafic magmas at high pressures. Geophys Res Lett 44(2):818–826

    Article  Google Scholar 

  • Dufils T, Folliet N, Mantisi B, Sator N, Guillot B (2017) Properties of magmatic liquids by molecular dynamics simulation: the example of a MORB melt. Chem Geol 461:34–46

    Article  Google Scholar 

  • Dufils T, Sator N, Guillot B (2020) A comprehensive molecular dynamics simulation study of hydrous magmatic liquids. Chem Geol 533:119300

    Article  Google Scholar 

  • Funamori N, Yamamoto S, Yagi T, Kikegawa T (2004) Exploratory studies of silicate melt structure at high pressures and temperatures by in situ X-ray diffraction. J Geophys Res-Sol Ea 109:B03203

    Article  Google Scholar 

  • Ghosh DB, Karki BB, Stixrude L (2014) First-principles molecular dynamics simulations of MgSiO3 glass: structure, density, and elasticity at high pressure. Am Mineral 99:1304–1314

    Article  Google Scholar 

  • Karki BB, Bohara B, Stixrude L (2011) First-principles study of diffusion and viscosity of anorthite (CaAl2Si2O8) liquid at high pressure. Am Mineral 96:744–751

    Article  Google Scholar 

  • Karki BB, Ghosh DB, Bajgain SK (2018) Simulation of Silicate Melts Under Pressure. 419–453.

  • Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C, Shen G, Wang Y, Kavner A, Manning CE (2014) Ultralow viscosity of carbonate melts at high pressures. Nat Commun 5:5091

    Article  Google Scholar 

  • Kono Y, Shibazaki Y, Kenney-Benson C, Wang Y, Shen G (2018) Pressure-induced structural change in MgSiO3 glass at pressures near the Earth’s core-mantle boundary. Proc Natl Acad Sci USA 115:1742–1747

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  • Kubicki JD, Lasaga AC (1988) Molecular dynamics simulations of SiO2 melt and glass: Ionic and covalent models. Am Mineral 73:945–955

    Google Scholar 

  • Lee SK, Lin JF, Cai YQ, Hiraoka N, Eng PJ, Okuchi T, Mao HK, Meng Y, Hu MY, Chow P, Shu J, Li B, Fukui H, Lee BH, Kim HN, Yoo CS (2008) X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth’s mantle. Proc Natl Acad Sci USA 105:7925–7929

    Article  Google Scholar 

  • Leimkuhler B, Noorizadeh E, Theil F (2009) A gentle stochastic thermostat for molecular dynamics. J Stat Phys 135:261–277

    Article  Google Scholar 

  • Leroy C, Sanloup C, Bureau H, Schmidt BC, Konôpková Z, Raepsaet C (2018) Bonding of xenon to oxygen in magmas at depth. Earth Planet Sci Lett 484:103–110

    Article  Google Scholar 

  • Li D, Bancroft GM, Fleet ME, Feng XH, Pan Y (1995) Al K-edge XANES spectra of aluminosilicate minerals. Am Mineral 80(5–6):432–440

    Article  Google Scholar 

  • Liebske C, Schmickler B, Terasaki H, Poe BT, Suzuki A, Funakoshi K, Ando R, Rubie DC (2005) Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities. Earth Planet Sci Lett 240:589–604

    Article  Google Scholar 

  • Majumdar A, Wu M, Pan Y, Iitaka T, Tse JS (2020) Structural dynamics of basaltic melt at mantle conditions with implications for magma oceans and superplumes. Nat Commun 11:4815

    Article  Google Scholar 

  • Majumdar A (2018) Theoretical study of structural transformations and properties of selected materials at extreme conditions (PhD thesis). University of Saskatchewan, Canada.

  • McSween HYJ, Taylor GJ, Wyatt MB (2009) Elemental composition of the martian crust. Science 324:736–739

    Article  Google Scholar 

  • Meade C, Hemley RJ, Mao HK (1992) High-pressure X-ray diffraction of SiO2 glass. Phys Rev Lett 69:1387–1390

    Article  Google Scholar 

  • Morarda G, Hernandez JA, Guarguaglini M, Bolis R, Benuzzi-Mounaix A, Vinci T, Fiquet G, Baron MA, Shim SH, Ko B, Gleason AE, Mao WL, Alonso-Mori R, Lee HJ, Nagler B, Galtier E, Sokaras D, Glenzer SH, Andrault D, Garbarino G, Mezouar M, Schuster AK, Ravasio A (2020) In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proc Natl Acad Sci 117:11981

    Article  Google Scholar 

  • Ohashi T, Sakamaki T, Funakoshi K, Suzuki A (2018) Pressure–induced structural changes of basaltic glass. J Miner Petrol Sci 113:286–292

    Article  Google Scholar 

  • Ohtani E, Maeda M (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet Sci Lett 193:69–75

    Article  Google Scholar 

  • Park SY, Lee SK (2018) Probing the structure of Fe-free model basaltic glasses: a view from a solid-state 27Al and 17O NMR study of Na-Mg silicate glasses, Na2O-MgO-Al2O3-SiO2 glasses, and synthetic Fe-free KLB-1 basaltic glasses. Geochim Cosmochim Acta 238:563–579

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Petitgirard S, Malfait WJ, Sinmyo R, Kupenko I, Hennet L, Harries D, Dane T, Burghammer M, Rubie DC (2015) Fate of MgSiO3 melts at core-mantle boundary conditions. Proc Natl Acad Sci USA 112:14186–14190

    Article  Google Scholar 

  • Petitgirard S, Malfait WJ, Journaux B, Collings IE, Jennings ES, Blanchard I, Kantor I, Kurnosov A, Cotte M, Dane T, Burghammer M, Rubie DC (2017) SiO2 glass density to lower-mantle pressures. Phys Rev Lett 119:215701

    Article  Google Scholar 

  • Sakamaki T (2017) Density of hydrous magma. Chem Geol 475:135–139

    Article  Google Scholar 

  • Sakamaki T, Suzuki A, Ohtani E, Terasaki H, Urakawa S, Katayama Y, Funakoshi K, Wang Y, Hernlund JW, Ballmer MD (2013) Ponded melt at the boundary between the lithosphere and asthenosphere. Nat Geosci 6:1041–1044

    Article  Google Scholar 

  • Sanloup C, Drewitt JW, Konopkova Z, Dalladay-Simpson P, Morton DM, Rai N, van Westrenen W, Morgenroth W (2013) Structural change in molten basalt at deep mantle conditions. Nature 503:104–107

    Article  Google Scholar 

  • Sanloup C, Cochain B, de Grouchy C, Glazyrin K, Konopkova Z, Liermann HP, Kantor I, Torchio R, Mathon O, Irifune T (2018) Behaviour of niobium during early Earth’s differentiation: insights from its local structure and oxidation state in silicate melts at high pressure. J Phys Condens Matter 30(8):084004

    Article  Google Scholar 

  • Shimoda K, Miyamoto H, Kikuchi M, Kusaba K, Okuno M (2005) Structural evolutions of CaSiO3 and CaMgSi2O6 metasilicate glasses by static compression. Chem Geol 222:83–93

    Article  Google Scholar 

  • Spera FJ, Ghiorso MS, Nevins D (2011) Structure, thermodynamic and transport properties of liquid MgSiO3: comparison of molecular models and laboratory results. Geochim Cosmochim Ac 75:1272–1296

    Article  Google Scholar 

  • Stixrude L, Karki B (2005) Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310:297–299

    Article  Google Scholar 

  • Stixrude L, Koker N, Sun N, Mookherjee M, Karki BB (2009) Thermodynamics of silicate liquids in the deep Earth. Earth Planet Sc Lett 278:226–232

    Article  Google Scholar 

  • Stolper EM, Ahrens TJ (1987) On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys Res Lett 14:1231–1233

    Article  Google Scholar 

  • Susman S, Volin KJ, Price DL, Grimsditch M, Rino JP, Kalia RK, Vashishta P, Gwanmesia G, Wang Y, Liebermann RC (1991) Intermediate-range order in permanently densified vitreous SiO2: a neutron-diffraction and molecular-dynamics study. Phys Rev B 43:1194–1197

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Funakoshi K, Terasaki H, Kubo T (2002) Viscosity of albite melt at high pressure and high temperature. Phys Chem Minerals 29:159–165

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Terasaki H, Funakoshi K (2005) Viscosity of silicate melts in CaMgSi2O6–NaAlSi2O6 system at high pressure. Phys Chem Miner 32:140–145

    Article  Google Scholar 

  • Tinker D, Lesher CE, Baxter GM, Uchida T, Wang Y (2004) High-pressure viscometry of polymerized silicate melts and limitations of the Eyring equation. Am Mineral 89:1701–1708

    Article  Google Scholar 

  • Tse JS, Klug DD (1993) Anisotropy in the structure of pressure-induced disordered solids. Phys Rev Lett 70:174–177

    Article  Google Scholar 

  • Waff HS (1975) Pressure-induced coordination changes in magmatic liquids. Geophys Res Lett 2:193–196

    Article  Google Scholar 

  • Wakabayashi D, Funamori N (2013) Equation of state of silicate melts with densified intermediate-range order at the pressure condition of the Earth’s deep upper mantle. Phys Chem Minerals 40:299–307

    Article  Google Scholar 

  • Wang Y, Sakamaki T, Skinner LB, Jing Z, Yu T, Kono Y, Park C, Shen G, Rivers ML, Sutton SR (2014) Atomistic insight into viscosity and density of silicate melts under pressure. Nat Commun 5:3241

    Article  Google Scholar 

  • Waseda Y, Toguri JM (1977) The structure of molten binary silicate systems CaO-SiO2 and MgO-SiO2. Met Trans 8B:563–568

    Article  Google Scholar 

  • Williams Q, Jeanloz R (1988) Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melt. Science 239:902

    Article  Google Scholar 

  • Yin CD, Okuno M, Morikawa H, Marumo F (1983) Structure analysis of MgSiO3 glass. J Non-Cryst Solids 55:131–141

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the Fund of China Scholarship for Overseas Studying (No. 201909440002). We thank Head Office for Information Systems and Cybersecurity, RIKEN, for a generous grant of computing time on the Hokusai BigWaterfall Cluster and Compute Canada for an allocation. The authors acknowledge Dr. Ohashi for useful discussion. JST and YP are supported by the NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Tse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1651 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Majumdar, A., Kuang, H. et al. A comparative study on pressure-induced structural transformations in a basaltic glass and melt from Ab initio molecular dynamics calculations. Phys Chem Minerals 48, 41 (2021). https://doi.org/10.1007/s00269-021-01165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-021-01165-3

Keywords

Navigation