Skip to main content

Advertisement

Log in

Temperature dependences of hydrous species in feldspars

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Feldspars are abundant in the crust of the Earth. Multiple hydrogen species such as OH, H2O and NH4+ can occur in the structure of feldspars. Hydrogen species play a critical role in influencing some properties of the host feldspars and the crust, including mechanical strength, electrical property of the crust, and evolution of the crustal fluids. Knowledge of hydrous species in feldspars to date has been mostly derived from spectroscopic studies at ambient temperature. However, the speciation and sites of hydrous species at high temperatures may not be quenchable. Here, we investigated the temperature dependences of several typical hydrous components (e.g., type IIa OH, type IIb OH and type I H2O) in feldspars by measuring the in situ FTIR spectra at elevated temperatures up to 800 °C. We found that the hydrous species demonstrated different behaviors at elevated temperatures. With increasing temperature, type IIa OH redistributes on the various sites in the anorthoclase structure. Additionally, O–H vibration frequencies increase for types IIa and IIb OH, and they decrease for type I H2O with increasing temperature. In contrast to type I H2O which drastically dehydrates during the heating process, types IIa and IIb OH show negligible loss; however, the bulk integral absorption coefficients drastically decrease with increasing temperature. These results may have implications in understanding the properties of hydrous species and feldspars at non-ambient temperatures, not only under geologic conditions but also at cold planetary surface conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1985) The high temperature behavior of trace hydrous components in silicate minerals. Am Mineral 70:1169–1179

    Google Scholar 

  • Aliatis I, Lambruschi E, Mantovani L, Bersani D, Andò S, Gatta GD, Gentile P, Salvioli-Mariani E, Prencipe S, Tribaudino M, Lottici P (2015) A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8). J Raman Spectrosc 46:501–508

    Article  Google Scholar 

  • Behrens H, Müller G (1995) An infrared spectroscopic study of hydrogen feldspar (HAlSi3O8). Mineral Mag 59:15–24

    Article  Google Scholar 

  • Bell DR, Ihinger PD (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta 64:2109–2118

    Article  Google Scholar 

  • Beran A (1986) A model of water allocation in alkali feldspar, derived from infrared spectroscopic investigations. Phys Chem Miner 13:306–310

    Article  Google Scholar 

  • Cheek LC, Donaldson Hanna KL, Pieters CM, Head JW, Whitten JL (2013) The distribution and purity of anorthosite across the orientale basin: new perspectives from moon mineralogy mapper data. J Geophys Res Planets 118:1805–1820

    Article  Google Scholar 

  • Della Ventura G, Susta U, Bellatreccia F, Marcelli A, Redhammer GJ, Oberti R (2017) Deprotonation of Fe-dominant amphiboles: Single-crystal HT-FTIR spectroscopic studies of synthetic potassic-ferro-richterite. Am Mineral 102:117–125

    Article  Google Scholar 

  • Dobson PF, Epstein S, Stolper EM (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta 53:2723–2730

    Article  Google Scholar 

  • Downs RT, Hazen RM, Finger LW (1994) The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al–Si ordering. Am Mineral 79:1042–1052

    Google Scholar 

  • Farver JR, Yund RA (1990) The effect of hydrogen, oxygen, and water fugacity on oxygen diffusion in alkali feldspar. Geochim Cosmochim Acta 54:2953–2964

    Article  Google Scholar 

  • Faul U, Cline CJ, David EC, Berry AJ, Jackson I (2016) Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet Sci Lett 452:227–237

    Article  Google Scholar 

  • Freeman JJ, Wang A, Kuebler KE, Haskin LA (2003) Raman spectroscopic characterization of the feldspars-implications for in situ surface mineral characterization in planetary exploration. 34th Lunar and Planetary Science Conference, Abstract No 1676

  • Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can Miner 46:1477–1500

    Article  Google Scholar 

  • Goldsmith JR (1987) Al/Si interdiffusion in albite: effect of pressure and the role of hydrogen. Contrib Mineral Petrol 95:311–321

    Article  Google Scholar 

  • Goldsmith JR (1988) Enhanced Al/Si diffusion in KAlSi3O8 at high pressure: the effect of hydrogen. J Geol 96:109–124

    Article  Google Scholar 

  • Hamada M, Ushioda M, Fujii T, Takahashi E (2013) Hydrogen concentration in plagioclase as a hygrometer of arc basaltic melts: approaches from melt inclusion analyses and hydrous melting experiments. Earth Planet Sci Lett 365:253–262

    Article  Google Scholar 

  • Harlow G (1982) The anorthoclase structures: the effects of temperature and composition. Am Mineral 67:975–996

    Google Scholar 

  • Henderson CMB (1979) An elevated temperature X-ray study of synthetic disordered Na–K alkali feldspars. Contrib Mineral Petrol 70:71–80

    Article  Google Scholar 

  • Hofmeister AM, Rossman GR (1985a) A model for the irradiative coloration of smoky feldspar and the inhibiting influence of water. Phys Chem Miner 12:324–332

    Article  Google Scholar 

  • Hofmeister AM, Rossman GR (1985b) A spectroscopic study of irradiation coloring of amazonite: structurally hydrous, Pb-bearing feldspar. Am Mineral 70:794–804

    Google Scholar 

  • Hui H, Peslier AH, Zhang Y, Neal CR (2013) Water in lunar anorthosites and evidence for a wet nearly moon. Nature 6:177–180

    Google Scholar 

  • Jamieson CS, Noe Dobrea EZ, Dalton JB III, Pitman KM, Abbey WJ (2014) The spectral variability of kieserite (MgSO4.H2O) with temperature and grain size and its application to the Martian surface. J Geophys Res. https://doi.org/10.1002/2013JE004489

    Google Scholar 

  • Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2004) A survey of hydrous species and concentrations in igneous feldspars. Am Mineral 89:586–600

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2013) The behavior of hydrogen in plagioclase feldspar at 800–1000 °C: Implications for re-equilibration of hydroxyl in volcanic phenocrysts. Am Mineral 98:1779–1787

    Article  Google Scholar 

  • Karato S (2006) Influence of hydrogen-related defects on the electrical conductivity and plastic deformation of mantle minerals: a critical review. In: Earth’s deep water cycle, vol 168. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Keppler H, Bagdassarov NS (1993) High-temperature FTIR spectra of H2O in rhyolite melt to 1300 °C. Am Mineral 78:1324–1327

    Google Scholar 

  • Kronenberg AK, Yund RA, Rossman GR (1996) Stationary and mobile hydrogen defects in potassium feldspar. Geochim Cosmochim Acta 60:4075–4094

    Article  Google Scholar 

  • Lakshtanov DL, Sinogeikin SV, Litasov KD, Prakapenka BV, Hellwig H, Wang JY, Sanches-Valle C, Perrillat JP, Chen B, Somayazulu M, Li J, Ohtani E, Bass JD (2007) The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proc Natl Acad Sci USA 104:13588–13590

    Article  Google Scholar 

  • Li L, Brodholt J, Alfè D (2009) Structure and elasticity of hydrous ringwoodite: a first principle investigation. Phys Earth Planet Inter 177:103–115

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H… O hydrogen bond lengths in minerals. Monatshefte für Chemie 130:1047–1059

    Google Scholar 

  • McKeown DA (2005) Raman spectroscopy and vibrational analyses of albite: from 25 °C through the melting temperature. Am Mineral 90:1506–1517

    Article  Google Scholar 

  • Milliken RE, Li S (2017) Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nat Geosci. https://doi.org/10.1038/NGEO2993

    Google Scholar 

  • Mills RD, Simon JI, Alexander C, Wang J, Hauri EH (2017) Water in alkali feldspar: the effect of rhyolite generation on the lunar hydrogen budget. Geochem Perspect Lett 3:115–127

    Article  Google Scholar 

  • Mosenfelder JL, Rossman GR, Johnson EA (2015) Hydrous species in feldspars: a reassessment based on FTIR and SIMS. Am Mineral 100:1209–1221

    Article  Google Scholar 

  • Mrosko M, Koch-müller M, Hartmann K (2010) Location and quantification of hydrogen in Ca- and Sr- anorthite. Eur J Mineral 22:103–112

    Article  Google Scholar 

  • Nakamoto K, Margosches M, Rundle RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6486

    Article  Google Scholar 

  • Ohashi Y, Finger LW (1974) Refinement of the crystal structure of sanidine at 25 and 400 °C. Camegie Inst Wash Year B 73:539–544

    Google Scholar 

  • Ohashi Y, Finger LW (1975) An effect of temperature on the feldspar structure: crystal structure of sanidine at 800 °C. Camegie Inst Wash Year B 74:569–572

    Google Scholar 

  • Panero WR (2010) First principles determination of the structure and elasticity of hydrous ringwoodite. J Geophys Res 115:B03203

    Article  Google Scholar 

  • Purevjav N, Okuchi T, Tomioka T, Wang X, Hoffmann C (2016) Quantitative analysis of hydrogen sites and occupancy in deep mantle hydrous wadsleyite using single crystal neutron diffraction. Sci Rep. https://doi.org/10.1038/srep34988

    Google Scholar 

  • Rogers AD, Nekvasil H (2015) Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophys Res Lett. https://doi.org/10.1002/2015GL063501

    Google Scholar 

  • Rossman GR (1996) Studies of OH in nominally anhydrous minerals. Phys Chem Miner 23:299–304

    Article  Google Scholar 

  • Rybacki E, Dresen G (2004) Deformation mechanism maps for feldspar rocks. Tectonophysics 382:173–187

    Article  Google Scholar 

  • Rybacki E, Gottschalk M, Wirth R, Dresen G (2006) Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. J Geophys Res 111:B03203

    Article  Google Scholar 

  • Salje EHK (1986) Raman spectroscopic investigation of the order parameter bahaviour in hypersolvus alkali feldspar: displacive phase transition and evidence for Na–K site ordering. Phys Chem Miner 13:340–346

    Article  Google Scholar 

  • Seaman SJ, Dyar MD, Marinkovic N, Dunbar NW (2006) An FTIR study of hydrogen in anorthoclase and associated melt inclusions. Am Miner 91:12–20

    Article  Google Scholar 

  • Shuai K, Yang XZ (2017) Quantitative analysis of H-species in anisotropic minerals by polarized infrared spectroscopy along three orthogonal directions. Contrib Mineral Petrol 172:14

    Article  Google Scholar 

  • Słaby E, Martin H, Morihis H, Smigielski M, Domonik A, Gőtze J, Hofes J, Hałas S, Simon K, Devidal JL, Moyen JF, Jayananda M (2012) Evidence in archaean alkali feldspar megacrysts for high- temperature interaction with mantle fluids. J Petrol 53:67–98

    Article  Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals: crystal structures, physical, chemical, and microtextural properties, 1, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Tokiwai K, Nakashima S (2010) Dehydration kinetics of muscovite by in situ infrared microspectroscopy. Phys Chem Miner 37:91–101

    Article  Google Scholar 

  • Umemoto K, Kawamura K, Hirose K, Wentzcovitch RM (2016) Post-stishovite transition in hydrous aluminous SiO2. Phys Earth Planet Inter 255:18–26

    Article  Google Scholar 

  • Withers AC, Behrens H (1999) Temperature-induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses between 300 and 100K. Phys Chem Miner 27:119–132

    Article  Google Scholar 

  • Xu H, Zhao Y, Hickmott DD, Lane NJ, Vogel SC, Zhang J, Daemen LL (2013) High-temperature neutron diffraction study of deuterated brucite. Phys Chem Miner 40:799–810

    Article  Google Scholar 

  • Yang XZ (2012a) Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett 317:241–250

    Article  Google Scholar 

  • Yang XZ (2012b) An experimental study of H solubility in feldspars: Effect of composition, oxygen fugacity, temperature and pressure and implications for crustal processes. Geochim Cosmochim Acta 97:46–57

    Article  Google Scholar 

  • Yang Y, Xia QK, Feng M, Zhang P (2010) Temperature dependence of IR absorption of OH species in clinopyroxene. Am Mineral 95:1439–1443

    Article  Google Scholar 

  • Yang Y, Xia QK, Feng M, Gu XY (2011) In situ FTIR investigations at varying temperatures on hydrous components in rutile. Am Mineral 96:1851–1855

    Article  Google Scholar 

  • Yang Y, Xia QK, Feng M, Liu S (2012) OH in nature orthopyroxene: an in situ FTIR investigation at varying temperatures. Phys Chem Miner 39:413–418

    Article  Google Scholar 

  • Yang Y, Xia QK, Zhang PP (2015) Evolutions of OH groups in diopside and feldspars with temperature. Eur J Mineral 27:185–192

    Article  Google Scholar 

  • Yang Y, Wang ZP, Tian ZZ, Xia QK, Li GW (2016) High-temperature phase transition and local structure of a hydrous anorthoclase. Phys Chem Miner 43:111–118

    Article  Google Scholar 

  • Zhang M, Wruck B, Barber AG, Salje E, Carpenter MA (1996) Phonon spectra of alkali feldspars: phase transition and solid solutions. Am Mineral 81:92–104

    Article  Google Scholar 

  • Zhang M, Salje EKH, Carpenter MA, Wang JY, Groat LA, Lager GA, Wang L, Beran A, Bismayer U (2007) Temperature dependence of IR absorption of hydrous/hydroxyl species in minerals and synthetic materials. Am Mineral 92:1502–1517

    Article  Google Scholar 

  • Zhang M, Tarantino SC, Su W, Lou X, Ren X (2016) Phonons, OH vibrations and structural modifications of phlogopite at high temperatures: an in-situ infrared spectroscopic study. Am Mineral 101:1873–1883

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2016QNA3014, 2017QNA3015). Comments and suggestions from the two anonymous reviewers helped to improve the manuscript and are highly appreciated. The authors also warmly thank Taku Tsuchiya for handling the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W.D., Yang, Y., Zhu, K.Y. et al. Temperature dependences of hydrous species in feldspars. Phys Chem Minerals 45, 609–620 (2018). https://doi.org/10.1007/s00269-018-0946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0946-1

Keywords

Navigation