Skip to main content
Log in

OH in natural orthopyroxene: an in situ FTIR investigation at varying temperatures

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In situ unpolarized and polarized Fourier transform infrared spectra of a natural orthopyroxene at varying temperatures were obtained using a heating stage attached on an Infrared microscope. The three main bands (3,595, 3,520 and 3,410 cm−1) at room temperature are ascribed to OH fundamental stretching bands. With increasing temperature from room temperature to 500 °C, the 3,595 cm−1 band shifts 20 cm−1 to lower frequency. The total integral absorbance decreases with increasing temperature. These changes are reversible. Excluding the influences of dehydration, proton migration, thermal expansion, and changes in OH dipole direction, the change of integral absorbance with temperature reflects the temperature dependence of absorption coefficient due to the anharmonicity of OH vibration. Based on the integral absorption coefficient at room temperature (14.84 ppm−1 cm−2) from Bell et al. (Am Mineral 80:463–474, 1995), the integral absorption coefficients at other temperatures are calculated. The variation of integral absorption coefficient between room temperature and 500 °C obtained in this study is about 18.5 % and may be greater at higher temperature according to the proposed linear relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asimow PD, Langmuir CH (2003) The importance of water to oceanic mantle melting regimes. Nature 421:815–820

    Article  Google Scholar 

  • Bell DR, Rossman GR (1992) Water in the Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxene. Am Mineral 80:463–474

    Google Scholar 

  • Gatta GD, Rinaldi R, Knight KS, Molin G, Artioli G (2007) High temperature structural and thermoelastic behavior of mantle orthopyroxene: an in situ neutron powder diffraction study. Phys Chem Mineral 34:185–200

    Article  Google Scholar 

  • Gavrilenko P, Ballaran TB, Keppler H (2010) The effect of Al and water on the compressibility of diopside. Am Mineral 95:608–616

    Article  Google Scholar 

  • Green DH, Hibberson WO, Kovács I, Rosenthal A (2010) Water and its influence on the lithosphere-asthenosphere boundary. Nature 467:448–450

    Article  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Holl CM, Smyth JR, Jacobsen SD, Frost DJ (2008) Effects of hydration on the structure and compressibility of wadsleyite, β-(Mg2SiO4). Am Mineral 93:598–607

    Article  Google Scholar 

  • Hushur A, Manghnani MH, Smyth JR, Nestola F, Frost DJ (2009) Crystal chemistry of hydrous forsterite and its vibrational properties up to 41GPa. Am Mineral 94:751–760

    Article  Google Scholar 

  • Jacobsen SD, Demouchy S, Frost DJ, Ballaran TB, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: oxygen sites for hydrogen storage in Earth’s interior. Am Mineral 90:61–70

    Article  Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatshefte Chem 130:1047–1059

    Google Scholar 

  • Lutz HD (1995) Hydroxide ions in condensed materials-correlation of spectroscopic and structural data. Struct Bond 82:86–103

    Google Scholar 

  • Mierdel K, Keppler H (2004) The temperature dependence of water solubility in enstatite. Contrib Mineral Petrol 148:305–311

    Article  Google Scholar 

  • Okumura S, Nakashima S (2005) Molar absorptivities of OH and H2O in rhyolitic glass at room temperature and at 400–600 °C. Am Mineral 90:441–447

    Article  Google Scholar 

  • Peslier AH, Woodland AB, Bell DR, Lazarov M (2010) Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467:78–82

    Article  Google Scholar 

  • Prechtel F, Stalder R (2010) FTIR spectroscopy with a focal plane array detector: a novel tool to monitor the spatial OH-defect distribution in single crystals applied to synthetic enstatite. Am Mineral 95:888–891

    Article  Google Scholar 

  • Prechtel F, Stalder R (2011) The potential use of OH-defects in enstatite as geobarometer. Contrib Mineral Petrol 162:615–623

    Article  Google Scholar 

  • Rauch M, Keppler H (2002) Water solubility in orthopyroxene. Contrib Mineral Petrol 143:525–536

    Article  Google Scholar 

  • Skogby H (2006) Water in natural mantle minerals I. Pyroxene. Rev Mineral Geochem 62:155–167

    Article  Google Scholar 

  • Skogby H, Bell DR, Rossman GR (1990) Hydroxide in pyroxene: variations in the natural environment. Am Mineral 75:764–774

    Google Scholar 

  • Smyth JR (1973) An orthopyroxene structure up to 850 °C. Am Mineral 58:636–648

    Google Scholar 

  • Stalder R (2004) Influence of Fe, Cr and Al on hydrogen incorporation in orthopyroxene. Eur J Mineral 16:703–711

    Article  Google Scholar 

  • Stalder R, Skogby H (2002) Hydrogen incorporation in enstatite. Eur J Mineral 14:1139–1144

    Article  Google Scholar 

  • Su W, Zhang M, Redfern SAT, Bromiley GD (2008) Dehydroxylation of omphacite of eclogite from the Dabie-Sulu. Lithos 105:181–190

    Article  Google Scholar 

  • Suzuki S, Nakashima S (1999) In situ IR measurements of OH species in quartz at high temperatures. Phys Chem Mineral 26:217–225

    Article  Google Scholar 

  • Tenner TJ, Hirschmann MM, Withers AC, Hervig RL (2009) Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol 262:42–56

    Article  Google Scholar 

  • Thompson AB (1992) Water in the Earth’s upper mantle. Nature 358:295–302

    Article  Google Scholar 

  • Umemoto K, Wentzcovitch RM, Hirschmann MM, Kolstedt DL, Withers AC (2011) A first-principles investigation of hydrous defects and IR frequencies in forsterite: the case for Si vacancies. Am Mineral 96:1475–1479

    Article  Google Scholar 

  • Xia QK, Hao YT, Li P, Deloule E, Coltorti M, Dallai L, Yang XZ, Feng M (2010) Low water contents of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res 115:B07207. doi:10.1029/2009JB006694

    Article  Google Scholar 

  • Yang HX, Prewitt C (2000) Chain and layer silicates at high temperatures and pressures. Rev Mineral Geochem 41:211–255

    Article  Google Scholar 

  • Yang XZ, Deloule E, Xia QK, Fan QC, Feng M (2008) Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China. J Geophys Res 113:B08207. doi:10.1029/2007JB005541

    Article  Google Scholar 

  • Yang Y, Xia QK, Feng M, Zhang PP (2010) Temperature dependence of IR absorption of OH species in clinopyroxene. Am Mineral 95:1439–1443

    Article  Google Scholar 

  • Ye Y, Schwering RA, Smyth JR (2009) Effects of hydrogen on thermal expansion of forsterite, wadsleyite, and ringwoodite at ambient pressure. Am Mineral 94:899–904

    Article  Google Scholar 

  • Zhang M, Salje EKH, Carpenter MA, Wang JY, groat LA, Lager GA, Wang L, Beran A, Bismayer U (2007) Temperature dependence of IR absorption of hydrous/hydroxyl species in minerals and synthetic materials. Am Mineral 92:1502–1517

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript benefited from comments and suggestions from Istvάn Kovάcs and an anonymous reviewer, and comments from the editor Catherine McCammon. This work was supported by the National Science Foundation of China (No. 41102024), the Fundamental Research Funds for Central Universities (WK2080000029), and the research fund for doctoral program of higher education of China (RFDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. K. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Xia, Q.K., Feng, M. et al. OH in natural orthopyroxene: an in situ FTIR investigation at varying temperatures. Phys Chem Minerals 39, 413–418 (2012). https://doi.org/10.1007/s00269-012-0496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0496-x

Keywords

Navigation