Skip to main content
Log in

Dehydration kinetics of muscovite by in situ infrared microspectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Dehydration behavior of muscovite flake was investigated at 760–860°C by using in situ high-temperature IR microspectroscopy for the OH absorption band around 3,620 cm−1. Isothermal kinetic heating experiments at each temperature gave detailed decrease curves of the OH band area with time. These curves have been simulated by the first and second order reactions or mono- and two-dimensional diffusion processes. The mono-dimensional diffusion was found to give the best fit to the experimental data and apparent diffusion coefficients D were determined at 760–860°C with the activation energy of 290 ± 20 kJ/mol. The apparent diffusion coefficients D varied with the sample thickness L. This variation can be explained by an m layers model with a unit length of L′ with a constant diffusion coefficient D′. Therefore, the dehydration process might be rate-limited by mono-dimensional diffusion through tetrahedral silicate sheet perpendicular to (001) planes of muscovite with a unit length of L′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbott RN Jr (1994) Energy calculations bearing on the dehydroxylation of muscovite. Can Mineral 32:87–92

    Google Scholar 

  • Aines RD, Rossman GR (1985) The high temperature behavior of trace hydrous components in silicate minerals. Am Mineral 70:1169–1179

    Google Scholar 

  • Bailey SW (1984) Crystal chemistry of the true micas. In: Bailey SW (ed) Micas. Reviews in Mineralogy, vol 13. Mineralogical Society of America, pp 13–16

  • Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, vol 2. Oxford University Press, London

    Google Scholar 

  • Eberhart JP (1963) Etude des transformations du mica muscovite par chauffage entre 700 et 1200°C. Bull Soc Fr Minéral Cristallogr 86:213–251

    Google Scholar 

  • Elphick SC, Graham CM, Dennis PF (1988) An ion microprobe study of anhydrous oxygen diffusion in anorthite: a comparison with hydrothermal data and some geological implications. Contrib Mineral Petrol 100:490–495. doi:10.1007/BF00371378

    Article  Google Scholar 

  • Farver JR, Yund RA (1991) Oxygen diffusion in quartz: dependence on temperature and water fugacity. Chem Geol 90:55–70. doi:10.1016/0009-2541(91)90033-N

    Article  Google Scholar 

  • Fortier SM, Giletti BJ (1991) Volume self-diffusion of oxygen in biotite, muscovite and phlogopite micas. Geochim Cosmochim Acta 55:1319–1330. doi:10.1016/0016-7037(91)90310-2

    Article  Google Scholar 

  • Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the earth’s crust. Elsevier, Amsterdam

    Google Scholar 

  • Gaines GL Jr, Vedder W (1964) Dehydroxylation of muscovite. Nature 201:495. doi:10.1038/201495a0

    Article  Google Scholar 

  • Giletti BJ, Yund RA (1984) Oxygen diffusion in quartz. J Geophys Res 89:4039–4046. doi:10.1029/JB089iB06p04039

    Article  Google Scholar 

  • Gridi-Bennadji F, Blanchart P (2007) Dehydroxylation kinetic and exfoliation of large muscovite flakes. J Therm Anal Calorim 90:747–753. doi:10.1007/s10973-006-7888-4

    Article  Google Scholar 

  • Guggenheim S, Chang Y-H, Koster van Groos AF (1987) Muscovite dehydration: high temperature studies. Am Mineral 72:537–550

    Google Scholar 

  • Hanykyr V, Ederova J, Travnicek Z, Srank J (1985) Isothermal dehydroxylation of muscovite mica. Thermochim Acta 93:517–520. doi:10.1016/0040-6031(85)85130-3

    Article  Google Scholar 

  • Holt JB, Cutler IB, Wadsworth ME (1958) Rate of thermal dehydration of muscovite. J Am Ceram Soc 41:242–246. doi:10.1111/j.1151-2916.1958.tb13548.x

    Article  Google Scholar 

  • Holt JB, Cutler IB, Wadsworth ME, Klein C, Hurlbut CS Jr (1964) Kinetics of the thermal dehydration of hydrous silicates. Clays Clay Miner 12:55–67. doi:10.1346/CCMN.1963.0120109

    Article  Google Scholar 

  • Kitamura M, Kondoh S, Morimoto N, Miller GH, Rossman GR, Putnis A (1987) Planar OH-bearing defects in mantle olivine. Nature 328:143–145. doi:10.1038/328143a0

    Article  Google Scholar 

  • Klein C, Hurlbut CS Jr (1993) Manual of mineralogy, 21st edition edn. Wiley and Sons, New York, pp 515–517 (after James D. Dana)

    Google Scholar 

  • Kodama H, Brydon JE (1968) Dehydration of microcrystalline muscovite. Trans Faraday Soc 63:3112–3119

    Google Scholar 

  • Kogure T, Nespolo M (1999) A TEM study of long-period mica polytypes: determination of the stacking sequence of oxybiotite by means of atomic resolution images and periodic intensity distribution (PID). Acta Crystallogr B 55:507–516. doi:10.1107/S0108768199003845

    Article  Google Scholar 

  • Mazzucato E, Artioli G, Gualtieri A (1999) High temperature dehydroxylation of muscovite-2 M (1): a kinetic study by in situ XRPD. Phys Chem Miner 26:375–381. doi:10.1007/s002690050197

    Article  Google Scholar 

  • Okumura S, Nakashima S (2004) Water diffusivity in rhyolitic glasses as determined by in situ IR spectroscopy. Phys Chem Miner 31:183–189. doi:10.1007/s00269-004-0383-1

    Article  Google Scholar 

  • Okumura S, Nakashima S (2005) Molar absorptivities of OH and H2O in rhyolitic glass at room temperature and at 400–600°C. Am Mineral 90:441–447. doi:10.2138/am.2005.1740

    Article  Google Scholar 

  • Okumura S, Nakashima S (2006) Water diffusion in basaltic to dacitic glasses. Chem Geol 227:70–82. doi:10.1016/j.chemgeo.2005.09.009

    Article  Google Scholar 

  • Okumura S, Nakamura M, Nakashima S (2003) Determination of molar absorptivity of IR fundamental OH-stretching vibration in rhyolitic glasses. Am Mineral 88:1657–1662

    Google Scholar 

  • Rossman GR (1984) Spectroscopy of micas. In: Bailey SW (ed) Micas. Reviews in Mineralogy, vol 13. Mineral Society of America, Washington DC, pp 145–181

  • Rouxhet PG (1970) Kinetics of dehydroxylation and of OH–OD exchange in macrocrystalline micas. Am Mineral 55:841–853

    Google Scholar 

  • Sabatier MG (1955) Les transformations du mica muscovite aux environs de 700°C. Bull Groupe Fr Argiles 6:35–39

    Google Scholar 

  • Shishelova TI, Metslk MS, Sokolov KY (1974) Changes in the IR spectra of micas on heating. Appl Spectrosc 20:784–786. doi:10.1007/BF00614158

    Article  Google Scholar 

  • Toraya H (1981) Distortions of octahedra and octahedral sheets in 1 M micas and the relation to their stability. Z Kristallogr 144:42–52

    Article  Google Scholar 

  • Udagawa S, Urabe K, Ikawa H, Katoo K, Hasu H (1973) The study on thermal transformations of muscovite by Weissenberg camera with high temperature apparatus. J Clay Sci Soc Jpn 13:131–138

    Google Scholar 

  • Udagawa S, Urabe K, Hasu H (1974) The crystal structure of muscovite dehydroxylate. Jpn Assoc Miner Petrol Econ Geol 69:381–389

    Google Scholar 

Download references

Acknowledgments

We are grateful to SII-NT for their kind assistance in thermogravimetry of the samples. We thank Ms. M. Yoshizaki of Tokyo Institute of Technology for her assistance of the EPMA analyses. We also thank Dr. M. Katsura, Mr. Y. Kirino and Dr. T. Yokoyama of Osaka University for their helpful supports in the data fitting procedures and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Nakashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokiwai, K., Nakashima, S. Dehydration kinetics of muscovite by in situ infrared microspectroscopy. Phys Chem Minerals 37, 91–101 (2010). https://doi.org/10.1007/s00269-009-0313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0313-3

Keywords

Navigation