Skip to main content

Advertisement

Log in

New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A Cs-bearing polyphase aggregate with composition (in wt%): 76(1)CsAlSi5O12 + 7(1)CsAlSi2O6 + 17(1)amorphous, was obtained from a clinoptilolite-rich epiclastic rock after a beneficiation process of the starting material (aimed to increase the fraction of zeolite to 90 wt%), cation exchange and then thermal treatment. CsAlSi5O12 is an open-framework compound with CAS topology; CsAlSi2O6 is a pollucite-like material with ANA topology. The thermal stability of this polyphase material was investigated by in situ high-T X-ray powder diffraction, the combined PT effects by a series of runs with a single-stage piston cylinder apparatus, and its chemical stability following the “availability test” (“AVA test”) protocol. A series of additional investigations were performed by WDS–electron microprobe analysis in order to describe the PT-induced modification of the material texture, and to chemically characterize the starting material and the run products. The “AVA tests” of the polyphase aggregate show an extremely modest release of Cs+: 0.05 mg/g. In response to applied temperature and at room P, CsAlSi5O12 experiences an unquenchable and displacive Ama2-to-Amam phase transition at about 770 K, and the Amam polymorph is stable in its crystalline form up to 1600 K; a crystalline-to-amorphous phase transition occurs between 1600 and 1650 K. In response to the applied P = 0.5 GPa, the crystalline-to-amorphous transition of CsAlSi5O12 occurs between 1670 and 1770 K. This leads to a positive Clapeyron slope (i.e., dP/dT > 0) of the crystalline-to-amorphous transition. When the polyphase aggregate is subjected at P = 0.5 GPa and T > 1770 K, CsAlSi5O12 melts and only CsAlSi2O6 (pollucite-like; dominant) and Cs-rich glass (subordinate) are observed in the quenched sample. Based on its thermo-elastic behavior, PT phase stability fields, and Cs+ retention capacity, CsAlSi5O12 is a possible candidate for use in the immobilization of radioactive isotopes of Cs, or as potential solid hosts for 137Cs γ-radiation source in sterilization applications. More in general, even the CsAlSi5O12-rich aggregate obtained by a clinoptilolite-rich epiclastic rock appears to be suitable for this type of utilizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adl T, Vance ER (1982) CsAlSi5O12: a possible host for 137Cs immobilization. J Mater Sci 17:849–855

    Article  Google Scholar 

  • Annehed H, Fälth L (1984) The crystal structure of Cs0.35Al0.35Si2.65O6, a cesium-aluminosilicate with the bikitaite framework. Z Kristallogr 166:301–306

    Google Scholar 

  • Araki T (1980) Crystal structure of a cesium aluminosilicate, Cs[AlSi5O12]. Z Kristallogr 152:207–213

    Article  Google Scholar 

  • Bearlocher Ch, Meier WM, Olson DH (2001) Atlas of zeolite framework types, fifth revised version. Elsevier, Amsterdam

    Google Scholar 

  • Bellatreccia F, Della Ventura G, Gatta GD, Cestelli Guidi M, Harley S (2012) Carbon dioxide in pollucite, a feldspathoid with the ideal composition (Cs,Na)16Al16Si32O96·nH2O. Min Mag 76:903–911

    Article  Google Scholar 

  • Brundu A, Cerri G (2015) Thermal transformation of Cs-clinoptilolite to CsAlSi5O12. Micropor Mesopor Mat 208:44–49

    Article  Google Scholar 

  • Bubnova RS, Krzhizhanovskaya MG, Filatov SK, Ugolkov VL, Paufler P (2007) XRD and DSC study of the formation and the melting of a new zeolite-like borosilicate CsBSi5O12 and (Cs,Rb)BSi5O12 solid solutions. Z Kristallogr 222:83–88

    Article  Google Scholar 

  • Cappelletti P, Rapisardo G, de’ Gennaro B, Colella A, Langella A, Graziano SF, Bish DL, de’ Gennaro M (2011) Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. J Nucl Mater 414:451–457

    Article  Google Scholar 

  • Cerri G, Cappelletti P, Langella A, de’ Gennaro M (2001) Zeolitization of Oligo-Miocene volcaniclastic rocks from Logudoro (northern Sardinia, Italy). Contrib Mineral Petrol 140:404–421

    Article  Google Scholar 

  • Cerri G, Farina M, Brundu A, Daković A, Giunchedi P, Gavini E, Rassu G (2016) Natural zeolites for pharmaceutical formulations: preparation and evaluation of a clinoptilolite-based material. Micropor Mesopor Mat 223:58–67

    Article  Google Scholar 

  • Drábek M, Rieder M, Viti C, Weiss Z, Frýda J (1998) Hydrothermal synthesis of a Cs ferruginous trioctahedral mica. Can Mineral 36:755–761

    Google Scholar 

  • Firor RL, Seff K (1977) Zero-coordinate K+. Crystal structure of dehydrated cesium and potassium exchanged zeolite A, Cs7K5-A. J Am Chem Soc 99:6249–6253

    Article  Google Scholar 

  • Fisch M (2007) Synthesis and temperature dependent structure characterization of microporous CsAlSi5O12. MSc Thesis, Universität Bern (Switzerland), p 83

  • Fisch M, Armbruster Th, Kolesov B (2008) Temperature-dependent structural study of microporous CsAlSi5O12. J Solid State Chem 181:423–431

    Article  Google Scholar 

  • Fisch M, Armbruster Th, Libowitzky E (2010) Microporous CsAlSi5O12 at non-ambient conditions: partial Na exchange at 100 °C. In: Hadjiivanov K, Valtchev V, Mintova S, Vayssilov G (eds) Topics in chemistry and materials science: advanced micro- and mesoporous materials—09, vol 4. Heron Press, Sofia, pp 61–70

    Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158:723–737

    Article  Google Scholar 

  • Gallagher SA, McCarthy GJ, Smith DK (1977) Preparation and X-ray characterization of CsAlSiO4. Mat Res Bull 12:1183–1190

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Zanazzi PF, Rieder M, Drabek M, Weiss Z, Klaska R (2008a) Synthesis and crystal structure of the feldspathoid CsAlSiO4: an open-framework silicate and potential nuclear waste disposal phase. Am Mineral 93:988–995

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Fisch M, Kadiyski M, Armbruster T (2008b) Stability at high-pressure, elastic behaviour and pressure-induced structural evolution of CsAlSi5O12, a potential nuclear waste disposal phase. Phys Chem Minerals 35:521–533

    Article  Google Scholar 

  • Gatta GD, Rinaldi R, McIntyre GJ, Nénert G, Bellatreccia F, Guastoni A, Della Ventura G (2009a) On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O96·nH2O: a natural microporous material of interest in nuclear technology. Am Mineral 94:1560–1568

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Boffa Ballaran T, Sanchez-Valle C, Pavese A (2009b) Elastic behavior and phase-stability of pollucite, a potential host for nuclear waste. Am Mineral 94:1137–1143

    Article  Google Scholar 

  • Gatta GD, Vignola P, McIntyre GJ, Diella V (2010) On the crystal chemistry of londonite [(Cs,K,Rb)Al4Be5B11O28]: a single-crystal neutron diffraction study at 300 and 20 K. Am Mineral 95:1467–1472

    Article  Google Scholar 

  • Gatta GD, Vignola P, Lee Y (2011) Stability of (Cs,K)Al4Be5B11O28 (londonite) at high pressure and high temperature: a potential neutron absorber material. Phys Chem Minerals 38:429–434

    Article  Google Scholar 

  • Gatta GD, Adamo I, Meven M, Lambruschi E (2012a) A single-crystal neutron and X-ray diffraction study of pezzottaite, Cs(Be2Li)Al2Si6O18. Phys Chem Minerals 39:829–840

    Article  Google Scholar 

  • Gatta GD, Merlini M, Lotti P, Lausi A, Rieder M (2012b) Phase stability and thermo-elastic behavior of CsAlSiO4 (ABW): a potential nuclear waste disposal material. Micropor Mesopor Mat 163:147–152

    Article  Google Scholar 

  • Gualtieri AF (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. J Appl Cryst 33:267–278

    Article  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235–245

    Article  Google Scholar 

  • Hughes RW, Weller MT (2002) The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction and 29Si MAS NMR. Micropor Mesopor Mater 51:189–196

    Article  Google Scholar 

  • Hwang H, Seoung D, Gatta GD, Blom DA, Vogt T, Lee Y (2015) Topotactic and reconstructive changes at high pressures and temperatures from Cs-natrolite to Cs-hexacelsian. Am Mineral 100:1562–1567

    Article  Google Scholar 

  • Ishizawa N, Miyata T, Minato I, Marumo F, Iwai S (1980) A structural investigation of alpha-Al2O3 at 2170 K. Acta Crystallogr B 36:228–230

    Article  Google Scholar 

  • Ito J (1976) Crystal synthesis of a new cesium alumosilicate, CsAlSi5O12. Am Mineral 61:170–171

    Google Scholar 

  • Klika Z, Weiss Z, Mellini M, Drábek M (2006) Water leaching of cesium from selected cesium mineral analogues. Appl Geochem 21:405–418

    Article  Google Scholar 

  • Kobayashi H, Yanase I, Mitamura T (1997) A new model for the pollucite thermal expansion mechanism. J Am Ceramic Soc 80:2161–2164

    Article  Google Scholar 

  • Kobayashi H, Sumino S, Tamai S, Yanase I (2006) Phase transition and lattice thermal expansion of Cs-deficient pollucite, Cs1−x Al1−x Si2+x O6 (x ≤ 0.25), compounds. J Am Ceramic Soc 89:3157–3161

    Article  Google Scholar 

  • Komarneni S, Roy R (1983) Hydrothermal reaction and dissolution studies of CsAlSi5O12 in water and brines. J Am Ceramic Soc 66:471–474

    Article  Google Scholar 

  • Komarneni S, White WB (1981) Stability of pollucite in hydrothermal fluids. Sci Basis Nucl Waste Manag 3:387–396

    Article  Google Scholar 

  • Lambruschi E, Gatta GD, Adamo I, Bersani D, Salvioli-Mariani E, Lottici PP (2014) Raman and structural comparison between the new gemstone pezzottaite Cs(Be2Li)Al2Si6O18 and Cs-beryl. J Raman Spectrosc 45:993–999

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR, pp 86–748

  • Liguori B, Caputo D, Iucolano F, Aprea P, de' Gennaro B (2013) Entrapping of Cs and Sr in heat-treated zeolite matrices. J Nucl Mat 435:196–201

    Article  Google Scholar 

  • Mellini M, Weiss Z, Rieder M, Drábek M (1996) Cs-ferriannite as a possible host for waste cesium: crystal structure and synthesis. Eur J Mineral 8:1265–1271

    Google Scholar 

  • Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. Rev Mineral Geochem 45:453–518

    Article  Google Scholar 

  • Rampf M, Fisch M, Dittmer M, Ritzberger C, Schweiger M, Höland W (2015) Tailoring the thermal expansion of glass-ceramics by controlled twofold crystallization of Li2Si2O5 and CsAlSi5O12. Inter J Appl Glass Sci (in press). doi:10.1111/ijag.12180

  • Sanchez-Valle V, Chi-Hong C, Gatta GD (2010) Single-crystal elastic properties of (Cs,Na)AlSi2O6·H2O pollucite: with potential use for long-term storage of Cs radioisotopes. J Appl Phys 108(1–7):093509

    Article  Google Scholar 

  • Sovacool BK (2010) A critical evaluation of nuclear power and renewable electricity in Asia. J Contemp Asia 40:393–400

    Article  Google Scholar 

  • Taylor P, DeVaal SD, Derrek G (1989) Owen Stability relationships between solid cesium aluminosilicates in aqueous solutions at 200 C. Can J Chem 67:76–81

    Article  Google Scholar 

  • Thomson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr 20:79–83

    Article  Google Scholar 

  • Van Der Sloot HA, Kosson DS (1995) ECN-Report-94-029. Netherlands Energy Res. Foundation, Petten

    Google Scholar 

  • Vance TB, Seff K (1975) Hydrated and dehydrated crystal structure of seven-twelfths cesium-exchanged zeolites A. J Phys Chem 79:2163–2166

    Article  Google Scholar 

  • Vance ER, Cartz L, Karioris FG (1984) X-ray diffraction and leaching of CsAlSi5O12 and CsZr2(PO4)3 irradiated by argon (3 MeV) ions. J Mater Sci 19:2943–2947

    Article  Google Scholar 

Download references

Acknowledgments

GDG acknowledges the Italian Ministry of Education, MIUR-Project: “Futuro in Ricerca 2012—ImPACT-RBFR12CLQD”. The authors thank Marco Merlini for the data collected at ESRF. GC acknowledges the support of Fondazione Banco di Sardegna, 2011, Project: “Synthesis of ceramic materials of environmental and industrial relevance from zeolitic precursors”. Martin Fisch (Bern) and an anonymous reviewer are thanked for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Gatta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatta, G.D., Brundu, A., Cappelletti, P. et al. New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste. Phys Chem Minerals 43, 639–647 (2016). https://doi.org/10.1007/s00269-016-0823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0823-8

Keywords

Navigation