Skip to main content
Log in

Phase Relations of the CaO–SiO2–Sm2O3 System

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The CaO–SiO2–Sm2O3 system is valuable for Sm2O3 recycling. However, the phase relations in this system have not been systematically studied previously. Therefore, the CaO–SiO2–Sm2O3 slag system was studied at T = 1773 K and T = 1873 K through thermodynamic equilibrium experiments in argon atmosphere. The equilibrated phases were measured by electron probe microanalysis (EPMA) and X-ray diffraction (XRD). At 1773 K, one liquid-phase region, twelve two-phase regions, and nine three-phase regions exist in the CaO–SiO2–Sm2O3 ternary system. At 1873 K, one liquid-phase region, eleven two-phase regions, and nine three-phase regions are presented in the system. The resulting data on the existence of solidus, solid solutions, and liquid regions were used to construct the isothermal sections for the CaO–SiO2–Sm2O3 ternary system. The data from this work will further investigations on the feasibility to recover Rare-earth elements (REEs) through pyrometallurgical processing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu C, Qiu J (2018) Phase equilibrium relations in the specific region of CaO–SiO2–La2O3 system. J Eur Ceram Soc 38:2090–2097. https://doi.org/10.1016/j.jeurceramsoc.2017.12.011

    Article  CAS  Google Scholar 

  2. Zhi W, Wang F, Yang B, Qu T, Deng Y, Tian Y, Zhao J (2019) Phase relations of CaO–Al2O3–Sc2O3 ternary system. J Am Ceram Soc 102:2863–2870. https://doi.org/10.1111/jace.16104

    Article  CAS  Google Scholar 

  3. Le TH, Malfliet A, Blanpain B, Guo MX (2016) Phase relations of the CaO–SiO2–Nd2O3 system and the implication for rare earths recycling. Metall Mater Trans B 47:1736–1744. https://doi.org/10.1007/s11663-016-0634-9

    Article  CAS  Google Scholar 

  4. Vidmar M, Golobič A, Meden A, Suvorov D, Škapin SD (2015) Sub-solidus phase relations and a structure determination of new phases in the CaO–La2O3–TiO2 system. J Eur Ceram Soc 35:2801–2814. https://doi.org/10.1016/j.jeurceramsoc.2015.03.038

    Article  CAS  Google Scholar 

  5. Lopato LM (1976) Highly refractory oxide systems containing oxides of rare-earth elements. Ceramurg Int 2(1):18–32

    Article  CAS  Google Scholar 

  6. Toropov NA, Bondar IA (1960) Phase diagram of the binary systems Sm2O3–SiO2 and Yb2O3–SiO2, and comparison of these silicates with the other rare earth element silicates which have been studied. Silic Rare Earth Elements Commun 6:1278–1285

    Google Scholar 

  7. Li L, Sun WY, Wang PL, Tang ZJ (1997) The calculation of phase diagrams of Al2O3–SiO2–R2O3 systems. Phys Chem Glasses 38:323–326

    CAS  Google Scholar 

  8. Toropov NA, Bondar IA (1961) Silicates of the rare earth elements. Russ Chem B 10:1278–1285. https://doi.org/10.1007/BF00910095

    Article  Google Scholar 

  9. Lin L, Tang Z, Sun WY, Wang PL (2000) Phase diagram estimation of the Al2O3–SiO2–Re2O3 system. J Shanghai Univ 4:72–80

    Article  Google Scholar 

  10. Lin H (2008) Production and application of oxidized oxides. Rare Earths Sichuan 1:25–29 (in Chinese)

    Google Scholar 

  11. Martel JF, Jandl S, Lejus AM, Viana B, Vivien D (1998) Optical Crystal field study of Sm2O3 (C- and B-type). J Alloy Compd 275–277:353–355. https://doi.org/10.1016/S0925-8388(98)00338-7

    Article  Google Scholar 

  12. Yin LX, Huang JF, Huang Y, Cao LY (2010) Orientation growth and optical properties of Sm2O3 thin films. Chin Ceram Commun 105–106:345–347. https://doi.org/10.4028/www.scientific.net/AMR.105-106.345

    Article  CAS  Google Scholar 

  13. Mandal B, Thakur SN (2004) Laser photoacoustic spectra of Sm ion in SmO and SmCl·6HO in the spectral profile 484–542 nm. Spectrochimica Acta Part A 60:933–939. https://doi.org/10.1016/S1386-1425(03)00322-6

    Article  CAS  Google Scholar 

  14. Mochizuki S (2003) Intense white luminescence of Sm2O3 irradiated with ultraviolet laser light under vacuum. Physica B 340–342:944–948. https://doi.org/10.1016/j.physb.2003.09.253

    Article  CAS  Google Scholar 

  15. Lin H (2008) Production and application of oxidized oxides. Rare Earth Mater 1:23–27 (in Chinese)

    Google Scholar 

  16. Yao Y, Qiu T, Jian B, Shen C (2005) Effect of Y2O3, La2O3, Sm2O3 on sintering and mechanical properties of alumina ceramics. J Rare Earth 23:162

    Google Scholar 

  17. Gang C (2002) Development of nanometer rare earth oxides. Rare Earth Inform 12:12–25 (in Chinese)

    Google Scholar 

  18. Gao J, Zhao Y, Yang W, Tian J, Guan F, Ma Y, Hou J, Kang J, Wang Y (2002) Preparation of samarium oxide nanoparticales and its catalytic activity on the esterification. Mater Chem Phys 77:65–69. https://doi.org/10.1016/S0254-0584(01)00594-6

    Article  Google Scholar 

  19. Lin H, Pun EYB, Huang LH, Liu XR (2002) Optical and luminescence properties of Sm3+-doped cadmium–aluminum–silicate glasses. Appl Phys Lett 80:2642–2644. https://doi.org/10.1063/1.1468919

    Article  CAS  Google Scholar 

  20. Škapin SD, Kolar D, Suvorov D (2000) Phase stability and equilibria in the La2O3–TiO2 system. J Eur Ceram Soc 20:1179–1185. https://doi.org/10.1016/S0955-2219(99)00270-8

    Article  Google Scholar 

  21. Xia L, Liu Z, Taskinen PA (2015) Experimental determination of the liquidus temperatures of the binary (SiO2–ZnO) system in equilibrium with air. J Eur Ceram Soc 35:4005–4010. https://doi.org/10.1016/j.jeurceramsoc.2015.07.007

    Article  CAS  Google Scholar 

  22. Schaedler TA, Fabrichnaya O, Levi CG (2008) Phase equilibria in the TiO2–YO1.5–ZrO2 system. J Eur Ceram Soc 28:2509–2520. https://doi.org/10.1016/j.jeurceramsoc.2008.03.011

    Article  CAS  Google Scholar 

  23. Skellern MG, Skakle JMS (2002) Subsolidus relations in the BaO–La2O3–V2O5 phase diagram. J Eur Ceram Soc 22:2933–2937. https://doi.org/10.1016/S0955-2219(02)00048-1

    Article  CAS  Google Scholar 

  24. Lakiza SM, RedKo VP, Lopato LM (2008) The Al2O3–ZrO2–Yb2O3 phase diagram. I. Isothermal sections at 1250 and 1650 °C. Powder Metall Met C 47:202–210. https://doi.org/10.1007/s11106-008-9006-6

    Article  CAS  Google Scholar 

  25. Vidmar M, Golobic A, Meden A, Suvorov D, Kapin SD (2015) Sub-solidus phase relations and a structure determination of new phases in the CaO–La2O3–TiO2 system. J Eur Ceram Soc 35:2801–2814. https://doi.org/10.1016/j.jeurceramsoc.2015.03.038

    Article  CAS  Google Scholar 

  26. Shi J, Chen M, Wan X, Taskinen P, Jokilaakso A (2020) Phase equilibrium study of the CaO–SiO2–MgO–Al2O3–TiO2 system at 1300 °C and 1400 °C in air. JOM 72:3204–3212. https://doi.org/10.1007/s11837-020-04136-1

    Article  CAS  Google Scholar 

  27. Qiu J, Liu C (2017) Subsolidus phase relations in the CaO–SiO2–Nb2O5–La2O3 quarternary system at 1273 K. ISIJ Int 57:2107–2114. https://doi.org/10.2355/isijinternational.isijint-2017-324

    Article  CAS  Google Scholar 

  28. Chen M, Shi J, Taskinen P, Jokilaakso A (2020) Phase equilibria of the CaO–SiO2–TiO2–Al2O3–MgO system in air at 1250–1400 °C. Ceram Int 46:27702–27710. https://doi.org/10.1016/j.ceramint.2020.07.268

    Article  CAS  Google Scholar 

  29. Zhen W, Zhu Q, Sun H (2019) Phase equilibria in the TiO2-rich part of the TiO2–CaO–SiO2–10 Wt Pct Al2O3-5 wt pct MgO system at 1773 K. Metall Mater Trans B 50:357–366

    Google Scholar 

  30. Zhao M, Song L, Fan X (2011) The boundary theory of phase diagrams and its application. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This work is awarded Grants Number 109720190004 by the Top Young Talents of Yunnan Ten Thousand Talents plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, W., Chen, X., Wang, F. et al. Phase Relations of the CaO–SiO2–Sm2O3 System. J. Sustain. Metall. 8, 1866–1876 (2022). https://doi.org/10.1007/s40831-022-00611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00611-y

Keywords

Navigation