Skip to main content
Log in

Luminescence and tenebrescence of natural sodalites: a chemical and structural study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Sodalite (Na8Al6Si6O24Cl2) shows a wide range of colours and may exhibit a variety of optical properties including cathodoluminescence, photoluminescence and tenebrescence. These optical peculiarities are not yet fully understood but are of key interest for industry. We provide a detailed study on the photochromic properties of natural sodalite, and we show that S is crucially influencing luminescence of sodalites. A reduced intensity in cathodoluminescence was observed at high S contents for some samples, showing that S can act as cathodoluminescence quencher. Photoluminescent sodalites are generally enriched in S compared to non-photoluminescent samples, although few samples being very low in S still show photoluminescence. Additionally, S was found to enlarge the unit cell in natural sodalites which might have a crucial impact on their photochromic properties. The most efficient tenebrescent samples were found to be low in Fe, Mn and S. They showed the smallest unit-cell dimensions, and a strong link between the atomic structure and the formation of F-centres is proposed. Tenebrescence in natural sodalites appears to be enhanced (1) by S but saturated at too high S concentrations and (2) by a stoichiometry and structure close to the ideal sodalite composition. In contrast to the term self-quenching for luminescence, we propose a saturation of F-centres to explain tenebrescence at different S contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allan R (1834) A manual of mineralogy, comprehending the more recent discoveries in the mineral kingdom. A & C Black, Edinburgh, pp 113–115

    Google Scholar 

  • Angell CL (1973) Raman spectroscopic investigation of zeolites and adsorbed molecules. J Phys Chem US 77:222–227

    Article  Google Scholar 

  • Ariai J, Smith S (1981) The Raman spectrum and analysis of phonon modes in sodalite. J Phys C Solid State 14(8):1193

    Article  Google Scholar 

  • Armstrong JT (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Springer, US, pp 261–315

    Chapter  Google Scholar 

  • Armstrong JA, Weller MT (2006) Structural observation of photochromism. Chem Commun 10:1094–1096

    Article  Google Scholar 

  • Bailey JC, Gwozdz R, Rose-Hansen J, Sørensen H (2001) Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:35–53

    Google Scholar 

  • Balassone G, Bellatreccia F, Mormone E, Biagioni C, Pasero M, Petti C, Mondillo N, Fameli G (2012) Sodalite-group minerals from the Somma-Vesuvius volcanic complex, Italy: a case study of K-feldspar-rich xenoliths. Miner Mag 76:191–212

    Article  Google Scholar 

  • Balassone G, Bellatreccia F, Ottolini L, Mormone A, Petti C, Ghiara MR, Altomare A, Saviano M, Rizzi R, D’Orazio L (2015) Sodalite-group minerals from Somma-Vesuvius volcano (Naples, Italy): a combined EPMA, SIMS and FTIR crystal chemical study. Canadian Minerol. doi:10.3749/canmin.1500083

    Google Scholar 

  • Ballentyne DWG, Bye KL (1970) The nature of photochromism in chlorosodalites from optical data. J Phys D Appl Phys 3:1438–1443

    Article  Google Scholar 

  • Ballirano P, Maras A (2005) Crystal chemical and structural characterization of an unusual CO3-bearing sodalite-group mineral. Eur J Miner 17:805–812

    Article  Google Scholar 

  • Bellatreccia F, Della Ventura G, Piccinini G, Cavallo A, Brilli M (2009) H2O and CO2 in minerals of the haüyne-sodalite group: an FTIR spectroscopy study. Miner Mag 73:399–413

    Article  Google Scholar 

  • Borgström LH (1901) Hackmanit ett nytt mineral i sodalitgruppen. Geol Foren Stock For 23:563

    Google Scholar 

  • Deer WA, Howie RA, Wise WS, Zussman J (1996) Rock-forming minerals, 4B (framework silicates: silica minerals, feldspathoids and the zeolites, 2nd edn. The Geological Society, London

    Google Scholar 

  • Deribere M (1937) Les mineraux fluorescents; fluorescences dans le groupe des sodalites et les groupes voisins. Bulletin Societe Geologique de Belgique 61:B52–B55

    Google Scholar 

  • Dexter D, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070. doi:10.1063/1.1740265

    Article  Google Scholar 

  • Di Muro A, Bonaccorsi E, Principe C (2004) Complex colour and chemical zoning of sodalite-group phases in a haüynophyre lava from Mt. Vulture, Italy. Miner Mag 68:591–614

    Article  Google Scholar 

  • Dutta PK, Del Barco B (1985) Raman spectroscopic studies of zeolite framework. Hydrated zeolite A and the influence of cations. J Phys Chem US 89:1861–1865

    Article  Google Scholar 

  • Farmer VC (1974) Infrared spectra of minerals. Mineralogical society monograph, vol 4. doi:10.1180/mono-4. ISBN: 978-0-903056-53-3

  • Finch AA, Friis H, Maghrabi M (2016) Defects in sodalite-group minerals determined from X-ray induced luminescence. Phys Chem Miner (in review)

  • Fleet ME (2005) XANES spectroscopy of sulfur in earth materials. Can Miner 43:1811–1838

    Article  Google Scholar 

  • Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20

    Article  Google Scholar 

  • Fuchs W, Wiegand DA (1975) Color center production and lattice expansion in KBr by X-irradiation near room temperature. J Phys Chem Solids 36:17–25

    Article  Google Scholar 

  • Gaft M, Panczer G, Nagli L, Yeates H (2009) Laser-induced time-resolved luminescence of tugtupite, sodalite and hackmanite. Phys Chem Miner 36:127–141

    Article  Google Scholar 

  • Gesing TM, Schmidt BC, Murshed MM (2010) Temperature dependent structural and spectroscopic studies of sodium gallosilicate nitrite sodalite. Mater Res Bull 45:1618–1624

    Article  Google Scholar 

  • Goettlicher J, Kotelnikov A, Suk N, Kovalski A, Vitova T, Steininger R (2013) Sulfur K X-ray absorption near edge structure spectroscopy on the photochrome sodalite variety hackmanite. Z Krist-Cryst Mater 228:157–171

    Article  Google Scholar 

  • Halama R, Vennemann T, Siebel W, Markl G (2005) The Grønnedal-Ika carbonatite–syenite complex, South Greenland: carbonatite formation by liquid immiscibility. J Petrol 46:191–217

    Article  Google Scholar 

  • Hassan I, Grundy H (1984) The crystal structures of sodalite-group minerals. Acta Crystallogr B 40:6–13

    Article  Google Scholar 

  • Herrmann F, Pinard P (1970) Penetration of electrons in alkali halide single crystals and effect of nonuniform irradiation on colour centre growth curves. J Phys Part C Solid 3:1037–1046

    Article  Google Scholar 

  • Herrmann F, Pinard P (1971) The simulation of a model of saturation of alkali halide crystals with F centres. J Phys Chem 32:2649–2652

    Google Scholar 

  • Hettmann K, Wenzel T, Marks M, Markl G (2012) The sulfur speciation in S-bearing minerals: new constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. Am Miner 97:1653–1661

    Article  Google Scholar 

  • Hogarth DD, Griffin WL (1976) New data on lazurite. Lithos 9:39–54

    Article  Google Scholar 

  • Huang SJ (1992) Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals. Miner Petrol 12:74–79

    Google Scholar 

  • Iwase EI (1938) Über die photochemischen Eigenschaften des Sodaliths von Kisshu, Korea. Z Krist-Cryst Mater 99:314–325

    Google Scholar 

  • Kai AT, Calais JL, Hassib A (1979) Electronic structure of the F-centre in sodalite. J Phys Chem Solids 40:803–808

    Article  Google Scholar 

  • Kaiheriman M, Maimaitinaisier A, Rehiman A, Sidike A (2014) Photoluminescence properties of green and red luminescence from natural and heat-treated sodalite. Phys Chem Miner 41:227–235

    Article  Google Scholar 

  • Kaliwoda M, Marschall HR, Marks MA, Ludwig T, Altherr R, Markl G (2011) Boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes. Lithos 125:51–64

    Article  Google Scholar 

  • Kirk RJ (1955) The luminescence and tenebrescence of natural and synthetic sodalite. Am Miner 40:22–31

    Google Scholar 

  • Kotel’nikov AR, Koval’skii AM, Suk NI (2005) Experimental study of sodalite solid solutions with chlorine-sulfur isomorphic anion substitution. Geochem Int 43:544–558

    Google Scholar 

  • Krumrei TV, Pernicka E, Kaliwoda M, Markl G (2007) Volatiles in a peralkaline system: abiogenic hydrocarbons and F-Cl–Br systematics in the naujaite of the Ilímaussaq intrusion, South Greenland. Lithos 95:298–314

    Article  Google Scholar 

  • Ledé B, Demortier A, Gobeltz-Hautecœur N, Lelieur JP, Picquenard E, Duhayon C (2007) Observation of the ν3 Raman band of S3 inserted into sodalite cages. J Raman Spect 38:1461–1468

    Article  Google Scholar 

  • Lee OI (1936) A new property of matter: reversible photosensitivity in hackmanite from Bancroft, Ontario. Am Miner 2:764–776

    Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer, Berlin

    Book  Google Scholar 

  • Marks MA, Markl G (2015) The Ilímaussaq alkaline complex, South Greenland. In layered intrusions. Springer, Netherlands, pp 649–691

    Book  Google Scholar 

  • McLaughlan SD, Marshall DJ (1970) Paramagnetic resonance of sulfur radicals in synthetic sodalites. J Phys Chem 74(6):1359–1363

    Article  Google Scholar 

  • Medved DB (1954) Hackmanite and its tenebrescent properties. Am Miner 39:615–629

    Google Scholar 

  • Mikuła A, Król M, Koleżyński A (2015) The influence of the long-range order on the vibrational spectra of structures based on sodalite cage. Spectrochim Acta A 144:273–280

    Article  Google Scholar 

  • Miser HD, Glass JJ (1941) Fluorescent sodalite and hackmanite from Magnet Cove, Arkansas. Am Mineral 26:437–445

    Google Scholar 

  • Naqvi AS, Naveedullah K, Hamdan JM (1991) Raman scattering studies of sodalite for crystal structure and coloration mechanism. Kluwer, Berlin

    Google Scholar 

  • Norrbo I, Gluchowski P, Paturi P, Sinkkonen J, Lastusaari M (2015) Persistent luminescence of tenebrescent Na8Al6Si6O24 (Cl, S)2: multifunctional optical markers. Inorg Chem 54:7717–7724

    Article  Google Scholar 

  • Ostroumov M, Fritsch E, Faulques E, Chauvet O (2002) Etude spectrometrique de la lazurite du Pamir, Tajikistan. Can Minar 40:885–893

    Article  Google Scholar 

  • Ozawa L (2007) Cathodoluminescence and photoluminescence: theories and practical applications, vol 2. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pearce NJG, Leng MJ, Emeleus CH, Bedford CM (1997) The origins of carbonatites and related rocks from the Gronnedal-Ika nepheline syenite complex, South Greenland; CO-Sr isotope evidence. Miner Mag 61:515–529

    Article  Google Scholar 

  • Rupp B (1988) XLAT—a microcomputer program for the refinement of cell constants. Scr Metall 22:1

    Article  Google Scholar 

  • Schipper DJ, Van Doorn CZ, Bolwijn PT (1972) Preparation of cathodochromic sodalites. J Am Ceram Soc 55:256–259

    Article  Google Scholar 

  • Sidike A, Sawuti A, Wang X-M, Zhu H-J, Kobayashi S, Kusachi I, Yamashita N (2007) Fine structure in photoluminescence spectrum of S2 center in sodalite. Phys Chem Miner 34:477–484

    Article  Google Scholar 

  • Taylor MJ, Marshall DJ, Forrester PA, McLaughlan SD (1970) Colour centres in sodalites and their use in storage displays. Radio Electro Eng 40:17–25

    Article  Google Scholar 

  • Thomson T (1812) XII. A chemical analysis of sodalite, a new mineral from Greenland. Trans R Soc Edinb 6:387–395

    Article  Google Scholar 

  • Thomson T, Wentzcovitch RM (1998) A density functional study of the electronic structure of sodalite. J Chem Phys 108:8584–8588

    Article  Google Scholar 

  • Townsend PD, Karali T, Rowlands AP, Smith VA, Vazquez G (1999) Recent examples of cathodoluminescence as a probe of surface structure and composition. Miner Mag 63:211

    Article  Google Scholar 

  • Van Doorn C, Schipper D (1971) Luminescence of O2, Mn2 and Fe3+ in sodalite. Phys Lett A 34:139–140

    Article  Google Scholar 

  • Warner TE (2011) Artificial hackmanite Na8[Al6Si6O24]Cl1.8S0.1 by a structure-conversion method with annealing under a reducing atmosphere, synthesis, properties and mineralogy of important inorganic materials. Wiley, Hoboken, pp 240–253

    Google Scholar 

  • Warner TE, Andersen JH (2012) The effects of sulfur intercalation on the optical properties of artificial ‘hackmanite’, Na8[Al6Si6O24] Cl1.8S0.1;‘sulfosodalite’, Na8[Al6Si6O24]S; and natural tugtupite, Na8[Be2Al2Si8O24] (Cl, S) 2 δ. Phys Chem Miner 39:163–168

    Article  Google Scholar 

  • Williams ER, Simmonds A, Armstrong JA, Weller MT (2010) Compositional and structural control of tenebrescence. J Mater Chem 20:10883–10887

    Article  Google Scholar 

Download references

Acknowledgments

This work was part of the MSc thesis of the first author. Funding for fieldwork and travelling was provided by the Dr. Eberhard Kornbeck-Stiftung Tübingen, Germany, and by the Universitätsbund Tübingen, Germany, respectively. We wish to thank Thomas Wenzel for his help with EPMA analyses and Annette Flicker who helped with Raman spectroscopy. Tom Andersen and Siri Lene Simonsen assisted with LA-ICP-MS measurements and Adrian Finch kindly made samples available for this study. This manuscript benefitted from the reviews of T.E. Warner and M. Gaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Zahoransky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahoransky, T., Friis, H. & Marks, M.A.W. Luminescence and tenebrescence of natural sodalites: a chemical and structural study. Phys Chem Minerals 43, 459–480 (2016). https://doi.org/10.1007/s00269-016-0810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0810-0

Keywords

Navigation