Physics and Chemistry of Minerals

, Volume 43, Issue 7, pp 459–480 | Cite as

Luminescence and tenebrescence of natural sodalites: a chemical and structural study

  • Teresa ZahoranskyEmail author
  • Henrik Friis
  • Michael A. W. Marks
Original Paper


Sodalite (Na8Al6Si6O24Cl2) shows a wide range of colours and may exhibit a variety of optical properties including cathodoluminescence, photoluminescence and tenebrescence. These optical peculiarities are not yet fully understood but are of key interest for industry. We provide a detailed study on the photochromic properties of natural sodalite, and we show that S is crucially influencing luminescence of sodalites. A reduced intensity in cathodoluminescence was observed at high S contents for some samples, showing that S can act as cathodoluminescence quencher. Photoluminescent sodalites are generally enriched in S compared to non-photoluminescent samples, although few samples being very low in S still show photoluminescence. Additionally, S was found to enlarge the unit cell in natural sodalites which might have a crucial impact on their photochromic properties. The most efficient tenebrescent samples were found to be low in Fe, Mn and S. They showed the smallest unit-cell dimensions, and a strong link between the atomic structure and the formation of F-centres is proposed. Tenebrescence in natural sodalites appears to be enhanced (1) by S but saturated at too high S concentrations and (2) by a stoichiometry and structure close to the ideal sodalite composition. In contrast to the term self-quenching for luminescence, we propose a saturation of F-centres to explain tenebrescence at different S contents.


Sodalite Luminescence Tenebrescence Sulphur species Structure Raman spectroscopy Self-quenching F-centres 



This work was part of the MSc thesis of the first author. Funding for fieldwork and travelling was provided by the Dr. Eberhard Kornbeck-Stiftung Tübingen, Germany, and by the Universitätsbund Tübingen, Germany, respectively. We wish to thank Thomas Wenzel for his help with EPMA analyses and Annette Flicker who helped with Raman spectroscopy. Tom Andersen and Siri Lene Simonsen assisted with LA-ICP-MS measurements and Adrian Finch kindly made samples available for this study. This manuscript benefitted from the reviews of T.E. Warner and M. Gaft.

Supplementary material

269_2016_810_MOESM1_ESM.pdf (5.4 mb)
Supplementary material 1 (PDF 5537 kb)


  1. Allan R (1834) A manual of mineralogy, comprehending the more recent discoveries in the mineral kingdom. A & C Black, Edinburgh, pp 113–115Google Scholar
  2. Angell CL (1973) Raman spectroscopic investigation of zeolites and adsorbed molecules. J Phys Chem US 77:222–227CrossRefGoogle Scholar
  3. Ariai J, Smith S (1981) The Raman spectrum and analysis of phonon modes in sodalite. J Phys C Solid State 14(8):1193CrossRefGoogle Scholar
  4. Armstrong JT (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Springer, US, pp 261–315CrossRefGoogle Scholar
  5. Armstrong JA, Weller MT (2006) Structural observation of photochromism. Chem Commun 10:1094–1096CrossRefGoogle Scholar
  6. Bailey JC, Gwozdz R, Rose-Hansen J, Sørensen H (2001) Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:35–53Google Scholar
  7. Balassone G, Bellatreccia F, Mormone E, Biagioni C, Pasero M, Petti C, Mondillo N, Fameli G (2012) Sodalite-group minerals from the Somma-Vesuvius volcanic complex, Italy: a case study of K-feldspar-rich xenoliths. Miner Mag 76:191–212CrossRefGoogle Scholar
  8. Balassone G, Bellatreccia F, Ottolini L, Mormone A, Petti C, Ghiara MR, Altomare A, Saviano M, Rizzi R, D’Orazio L (2015) Sodalite-group minerals from Somma-Vesuvius volcano (Naples, Italy): a combined EPMA, SIMS and FTIR crystal chemical study. Canadian Minerol. doi: 10.3749/canmin.1500083 Google Scholar
  9. Ballentyne DWG, Bye KL (1970) The nature of photochromism in chlorosodalites from optical data. J Phys D Appl Phys 3:1438–1443CrossRefGoogle Scholar
  10. Ballirano P, Maras A (2005) Crystal chemical and structural characterization of an unusual CO3-bearing sodalite-group mineral. Eur J Miner 17:805–812CrossRefGoogle Scholar
  11. Bellatreccia F, Della Ventura G, Piccinini G, Cavallo A, Brilli M (2009) H2O and CO2 in minerals of the haüyne-sodalite group: an FTIR spectroscopy study. Miner Mag 73:399–413CrossRefGoogle Scholar
  12. Borgström LH (1901) Hackmanit ett nytt mineral i sodalitgruppen. Geol Foren Stock For 23:563Google Scholar
  13. Deer WA, Howie RA, Wise WS, Zussman J (1996) Rock-forming minerals, 4B (framework silicates: silica minerals, feldspathoids and the zeolites, 2nd edn. The Geological Society, LondonGoogle Scholar
  14. Deribere M (1937) Les mineraux fluorescents; fluorescences dans le groupe des sodalites et les groupes voisins. Bulletin Societe Geologique de Belgique 61:B52–B55Google Scholar
  15. Dexter D, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070. doi: 10.1063/1.1740265 CrossRefGoogle Scholar
  16. Di Muro A, Bonaccorsi E, Principe C (2004) Complex colour and chemical zoning of sodalite-group phases in a haüynophyre lava from Mt. Vulture, Italy. Miner Mag 68:591–614CrossRefGoogle Scholar
  17. Dutta PK, Del Barco B (1985) Raman spectroscopic studies of zeolite framework. Hydrated zeolite A and the influence of cations. J Phys Chem US 89:1861–1865CrossRefGoogle Scholar
  18. Farmer VC (1974) Infrared spectra of minerals. Mineralogical society monograph, vol 4. doi: 10.1180/mono-4. ISBN: 978-0-903056-53-3
  19. Finch AA, Friis H, Maghrabi M (2016) Defects in sodalite-group minerals determined from X-ray induced luminescence. Phys Chem Miner (in review)Google Scholar
  20. Fleet ME (2005) XANES spectroscopy of sulfur in earth materials. Can Miner 43:1811–1838CrossRefGoogle Scholar
  21. Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20CrossRefGoogle Scholar
  22. Fuchs W, Wiegand DA (1975) Color center production and lattice expansion in KBr by X-irradiation near room temperature. J Phys Chem Solids 36:17–25CrossRefGoogle Scholar
  23. Gaft M, Panczer G, Nagli L, Yeates H (2009) Laser-induced time-resolved luminescence of tugtupite, sodalite and hackmanite. Phys Chem Miner 36:127–141CrossRefGoogle Scholar
  24. Gesing TM, Schmidt BC, Murshed MM (2010) Temperature dependent structural and spectroscopic studies of sodium gallosilicate nitrite sodalite. Mater Res Bull 45:1618–1624CrossRefGoogle Scholar
  25. Goettlicher J, Kotelnikov A, Suk N, Kovalski A, Vitova T, Steininger R (2013) Sulfur K X-ray absorption near edge structure spectroscopy on the photochrome sodalite variety hackmanite. Z Krist-Cryst Mater 228:157–171CrossRefGoogle Scholar
  26. Halama R, Vennemann T, Siebel W, Markl G (2005) The Grønnedal-Ika carbonatite–syenite complex, South Greenland: carbonatite formation by liquid immiscibility. J Petrol 46:191–217CrossRefGoogle Scholar
  27. Hassan I, Grundy H (1984) The crystal structures of sodalite-group minerals. Acta Crystallogr B 40:6–13CrossRefGoogle Scholar
  28. Herrmann F, Pinard P (1970) Penetration of electrons in alkali halide single crystals and effect of nonuniform irradiation on colour centre growth curves. J Phys Part C Solid 3:1037–1046CrossRefGoogle Scholar
  29. Herrmann F, Pinard P (1971) The simulation of a model of saturation of alkali halide crystals with F centres. J Phys Chem 32:2649–2652Google Scholar
  30. Hettmann K, Wenzel T, Marks M, Markl G (2012) The sulfur speciation in S-bearing minerals: new constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. Am Miner 97:1653–1661CrossRefGoogle Scholar
  31. Hogarth DD, Griffin WL (1976) New data on lazurite. Lithos 9:39–54CrossRefGoogle Scholar
  32. Huang SJ (1992) Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals. Miner Petrol 12:74–79Google Scholar
  33. Iwase EI (1938) Über die photochemischen Eigenschaften des Sodaliths von Kisshu, Korea. Z Krist-Cryst Mater 99:314–325Google Scholar
  34. Kai AT, Calais JL, Hassib A (1979) Electronic structure of the F-centre in sodalite. J Phys Chem Solids 40:803–808CrossRefGoogle Scholar
  35. Kaiheriman M, Maimaitinaisier A, Rehiman A, Sidike A (2014) Photoluminescence properties of green and red luminescence from natural and heat-treated sodalite. Phys Chem Miner 41:227–235CrossRefGoogle Scholar
  36. Kaliwoda M, Marschall HR, Marks MA, Ludwig T, Altherr R, Markl G (2011) Boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes. Lithos 125:51–64CrossRefGoogle Scholar
  37. Kirk RJ (1955) The luminescence and tenebrescence of natural and synthetic sodalite. Am Miner 40:22–31Google Scholar
  38. Kotel’nikov AR, Koval’skii AM, Suk NI (2005) Experimental study of sodalite solid solutions with chlorine-sulfur isomorphic anion substitution. Geochem Int 43:544–558Google Scholar
  39. Krumrei TV, Pernicka E, Kaliwoda M, Markl G (2007) Volatiles in a peralkaline system: abiogenic hydrocarbons and F-Cl–Br systematics in the naujaite of the Ilímaussaq intrusion, South Greenland. Lithos 95:298–314CrossRefGoogle Scholar
  40. Ledé B, Demortier A, Gobeltz-Hautecœur N, Lelieur JP, Picquenard E, Duhayon C (2007) Observation of the ν3 Raman band of S3 inserted into sodalite cages. J Raman Spect 38:1461–1468CrossRefGoogle Scholar
  41. Lee OI (1936) A new property of matter: reversible photosensitivity in hackmanite from Bancroft, Ontario. Am Miner 2:764–776Google Scholar
  42. Marfunin AS (1979) Spectroscopy, luminescence and radiation centers in minerals. Springer, BerlinCrossRefGoogle Scholar
  43. Marks MA, Markl G (2015) The Ilímaussaq alkaline complex, South Greenland. In layered intrusions. Springer, Netherlands, pp 649–691CrossRefGoogle Scholar
  44. McLaughlan SD, Marshall DJ (1970) Paramagnetic resonance of sulfur radicals in synthetic sodalites. J Phys Chem 74(6):1359–1363CrossRefGoogle Scholar
  45. Medved DB (1954) Hackmanite and its tenebrescent properties. Am Miner 39:615–629Google Scholar
  46. Mikuła A, Król M, Koleżyński A (2015) The influence of the long-range order on the vibrational spectra of structures based on sodalite cage. Spectrochim Acta A 144:273–280CrossRefGoogle Scholar
  47. Miser HD, Glass JJ (1941) Fluorescent sodalite and hackmanite from Magnet Cove, Arkansas. Am Mineral 26:437–445Google Scholar
  48. Naqvi AS, Naveedullah K, Hamdan JM (1991) Raman scattering studies of sodalite for crystal structure and coloration mechanism. Kluwer, BerlinGoogle Scholar
  49. Norrbo I, Gluchowski P, Paturi P, Sinkkonen J, Lastusaari M (2015) Persistent luminescence of tenebrescent Na8Al6Si6O24 (Cl, S)2: multifunctional optical markers. Inorg Chem 54:7717–7724CrossRefGoogle Scholar
  50. Ostroumov M, Fritsch E, Faulques E, Chauvet O (2002) Etude spectrometrique de la lazurite du Pamir, Tajikistan. Can Minar 40:885–893CrossRefGoogle Scholar
  51. Ozawa L (2007) Cathodoluminescence and photoluminescence: theories and practical applications, vol 2. CRC Press, Boca RatonCrossRefGoogle Scholar
  52. Pearce NJG, Leng MJ, Emeleus CH, Bedford CM (1997) The origins of carbonatites and related rocks from the Gronnedal-Ika nepheline syenite complex, South Greenland; CO-Sr isotope evidence. Miner Mag 61:515–529CrossRefGoogle Scholar
  53. Rupp B (1988) XLAT—a microcomputer program for the refinement of cell constants. Scr Metall 22:1CrossRefGoogle Scholar
  54. Schipper DJ, Van Doorn CZ, Bolwijn PT (1972) Preparation of cathodochromic sodalites. J Am Ceram Soc 55:256–259CrossRefGoogle Scholar
  55. Sidike A, Sawuti A, Wang X-M, Zhu H-J, Kobayashi S, Kusachi I, Yamashita N (2007) Fine structure in photoluminescence spectrum of S2 center in sodalite. Phys Chem Miner 34:477–484CrossRefGoogle Scholar
  56. Taylor MJ, Marshall DJ, Forrester PA, McLaughlan SD (1970) Colour centres in sodalites and their use in storage displays. Radio Electro Eng 40:17–25CrossRefGoogle Scholar
  57. Thomson T (1812) XII. A chemical analysis of sodalite, a new mineral from Greenland. Trans R Soc Edinb 6:387–395CrossRefGoogle Scholar
  58. Thomson T, Wentzcovitch RM (1998) A density functional study of the electronic structure of sodalite. J Chem Phys 108:8584–8588CrossRefGoogle Scholar
  59. Townsend PD, Karali T, Rowlands AP, Smith VA, Vazquez G (1999) Recent examples of cathodoluminescence as a probe of surface structure and composition. Miner Mag 63:211CrossRefGoogle Scholar
  60. Van Doorn C, Schipper D (1971) Luminescence of O2, Mn2 and Fe3+ in sodalite. Phys Lett A 34:139–140CrossRefGoogle Scholar
  61. Warner TE (2011) Artificial hackmanite Na8[Al6Si6O24]Cl1.8S0.1 by a structure-conversion method with annealing under a reducing atmosphere, synthesis, properties and mineralogy of important inorganic materials. Wiley, Hoboken, pp 240–253Google Scholar
  62. Warner TE, Andersen JH (2012) The effects of sulfur intercalation on the optical properties of artificial ‘hackmanite’, Na8[Al6Si6O24] Cl1.8S0.1;‘sulfosodalite’, Na8[Al6Si6O24]S; and natural tugtupite, Na8[Be2Al2Si8O24] (Cl, S)2 δ. Phys Chem Miner 39:163–168CrossRefGoogle Scholar
  63. Williams ER, Simmonds A, Armstrong JA, Weller MT (2010) Compositional and structural control of tenebrescence. J Mater Chem 20:10883–10887CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Teresa Zahoransky
    • 1
    • 2
    Email author
  • Henrik Friis
    • 2
  • Michael A. W. Marks
    • 1
  1. 1.Fachbereich Geowissenschaften, Mathematisch-Naturwissenschaftliche FakultätUniversität TübingenTübingenGermany
  2. 2.Natural History MuseumUniversity of OsloOsloNorway

Personalised recommendations