Skip to main content
Log in

Crystal Phase Recognition and Photoluminescence Behavior of Deep Reddish-Orange Sm3+-Activated Ca9Gd(VO4)7 Nanocrystals for Modern Solid-State Lightings

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A deep reddish-orange-emitting Sm3+-activated vanadate-based nanocrystalline material series is developed via the solution combustion procedure. A trigonal crystal framework is formed with space group R3c (161) having unevenly designed particles with extents between 33 nm and 62 nm. Morphological aspects are examined via scanning and transmission electron microscopy (SEM and TEM). The elemental investigation is confirmed through energy-dispersive x-ray analysis (EDAX). On near-UV excitation, the luminescence spectrum presents a fair reddish-orange emission at 606-nm wavelength consistent with the electronic transition 4G5/2 → 6H7/2. The energy band gap is inspected via diffuse reflectance measurements. Radiative lifetime, quantum efficacy, and rates of radiation-less transformations were also examined and found to have values as 1.4914 ms, 82.84%, and 115.1 ms−1 for the optimized nanosample, respectively. The CIE coordinates, and hence CCT values, lay in the reddish-orange zone of the chromaticity plot, thus finalizing their potential application in WLEDs, solid-state lighting (SSL), and other advanced optoelectronic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P.J. Schmidt, and W. Schnick, Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13, 891 (2014).

    Article  CAS  Google Scholar 

  2. M. Liu, W. Lü, J. Huo, B. Shao, Y. Feng, S. Zhao, and H. You, Syntheses, crystal structures and photoluminescence properties of Ca9Y(PO4)5(SiO4)F1.5O0.25:Ln3+ (Ln3+ = Eu3+/Tb3+/Dy3+/Sm3+) phosphors for near-UV white LEDs. RSC Adv. 6, 92371 (2016).

    Article  CAS  Google Scholar 

  3. A. Chapel, R. Boonsin, G. Chadeyron, D. Boyer, A. Bousquet, R. Mahiou, W. Henrique Cassinelli, C.V. Santilli, and S. Therias, Preparation and characterization of a red luminescent composite composed of an EVA copolymer and a Y3BO6:Eu3+ phosphor. New J. Chem. 41, 12006 (2017).

    Article  CAS  Google Scholar 

  4. H.-Y. Chen, R.-Y. Yang, and S.-J. Chang, Improving crystalline morphology and photoluminescent properties of BaY2ZnO5:Eu3+ phosphors prepared using microwave assisted sintering. Mater. Lett. 64, 2548 (2010).

    Article  CAS  Google Scholar 

  5. F. Baur, F. Glocker, and T. Jüstel, Photoluminescence and energy transfer rates and efficiencies in Eu 3+ activated Tb2Mo3O12. J. Mater. Chem. C. 3, 2054 (2015).

    Article  CAS  Google Scholar 

  6. M. Dalal, V.B. Taxak, J. Dalal, A. Khatkar, S. Chahar, R. Devi, and S.P. Khatkar, Crystal structure and Judd-Ofelt properties of a novel color tunable blue-white-red Ba5Zn4Y8O21:Eu3+ nanophosphor for near-ultraviolet based WLEDs. J. Alloys Compd. 698, 662 (2017).

    Article  CAS  Google Scholar 

  7. J. Wang, X. Jing, C. Yan, J. Lin, and F. Liao, Influence of fluoride on F–F transitions of Eu3+ in LiEuM2O8 (M = Mo, W). J. Lumin. 121, 57 (2006).

    Article  CAS  Google Scholar 

  8. J. Zhong, D. Chen, Y. Zhou, Z. Wan, M. Ding, W. Bai, and Z. Ji, New Eu3+ -activated perovskite La0.5Na0.5TiO3 phosphors in glass for warm white light emitting diodes. Dalton Trans. 45, 4762 (2016).

    Article  CAS  Google Scholar 

  9. M. Dalal, J. Dalal, S. Chahar, H. Dahiya, S. Devi, P. Dhankhar, S. Kumar, V.B. Taxak, D. Kumar, and S.P. Khatkar, A hybrid treatment of Ba2LaV3O11:Eu3+ nanophosphor system: first-principal and experimental investigations into electronic, crystal and the optical structure. J. Alloys Compd. 805, 84 (2019).

    Article  CAS  Google Scholar 

  10. M. Dalal, S. Chahar, J. Dalal, R. Devi, D. Kumar, S. Devi, V.B. Taxak, A. Khatkar, M. Kumar, and S.P. Khatkar, Energy transfer and photoluminescent analysis of a novel color-tunable Ba2Y1−xV3O11:xSm3+ nanophosphor for single-phased phosphor-converted white LEDs. Ceram. Int. 44, 10531 (2018).

    Article  CAS  Google Scholar 

  11. L. Li, G. Wang, Y. Huang, L. Zhang, Z. Lin, and G. Wang, Crystal growth and spectral properties of Nd3+:Ca9Gd(VO4)7 crystal. J. Cryst. Growth 314, 331 (2011).

    Article  CAS  Google Scholar 

  12. F. Zheng, S. Sun, Y. Feng, H. Kong, C. Dou, S. Ullah, J. Tang, L. Li, B. Teng, and D. Zhong, Yb:Ca9Gd(VO4)7, a potential ultrafast pulse laser crystal with promising spectral properties. J. Lumin. 221, 117085 (2020).

    Article  CAS  Google Scholar 

  13. S. Qian, Y. Ma, Z. Dai, G. Zheng, D. Zou, G. Li, and M. Wu, Photoluminescence properties of Na+-free and Na+ co-doped Ca9Gd(VO4)7:Eu3+, Dy3+. Mater. Res. Bull. 48, 521 (2013).

    Article  CAS  Google Scholar 

  14. R. Kumar Tamrakar, D.P. Bisen, K. Upadhyay, I.P. Sahu, and M. Sahu, The effect of annealing and irradiation dose on the thermoluminescence glow peak of a monoclinic Gd2O3:Yb3+ phosphor. RSC Adv. 6, 80797 (2016).

    Article  Google Scholar 

  15. L.F. da Silva, W. Avansi, M.L. Moreira, A. Mesquita, L.J.Q. Maia, J. Andrés, E. Longo, and V.R. Mastelaro, Relationship between crystal shape, photoluminescence, and local structure in SrTiO3 synthesized by microwave-assisted hydrothermal method. J. Nanomater. 2012, 1 (2012).

    Google Scholar 

  16. M. Rajendran, K. Singh, and S. Vaidyanathan, A novel Sm3+ -activated Li3BaSrLn3(MO4)8 [Ln = La, Gd, and Y; M = Mo and W] deep red-emitting phosphors for plant cultivation and white LEDs. J. Inf. Display 22, 63 (2021).

    Article  CAS  Google Scholar 

  17. P. Shahab Khan, B.C. Jamalaiah, M. Jayasimhadri, H. Kaur, N. Madhu, P. Raghupathi, and K. Pavani, Deep reddish-orange emitting Sr3Gd(PO4)3:Sm3+ phosphors via modified citrate-gel combustion method. J. Mol. Struct. 1255, 132428 (2022).

    Article  CAS  Google Scholar 

  18. Y. Zhang, R. Pang, C. Li, C. Zang, and Q. Su, Reddish orange long lasting phosphorescence of Sm3+ in Sr2ZnSi2O7:Sm3+ phosphors. J. Rare Earths 28, 705 (2010).

    Article  Google Scholar 

  19. P. Phogat, S.P. Khatkar, V.B. Taxak, and R.K. Malik, Sm3+ doped Bi4MgO4(PO4)2:crystal and optoelectronic investigation of the solution combustion derived bright orange emanating novel nanophosphor for SSLs. Mater. Chem. Phys. 276, 125389 (2022).

    Article  CAS  Google Scholar 

  20. S. Ekambaram and K.C. Patil, Synthesis and properties of Eu2+ activated blue phosphors. J. Alloys Compd. 248, 7 (1997).

    Article  CAS  Google Scholar 

  21. S. Ekambaram and K.C. Patil, Combustion synthesis of yttria. J. Mater. Chem. 5, 905 (1995).

    Article  CAS  Google Scholar 

  22. P.E. Stutzman and L. Struble, Instructions in using GSAS rietveld software for quantitative x-ray diffraction analysis of portland clinker and cement, National Institute of Standards and Technology (2015).

  23. A.C. Larson, R.B. Dreele, and B. Toby, General structure analysis system - GSAS/EXPGUI, 748 (1994).

  24. F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos Santos, and J.M. Sasaki, The Scherrer equation and the dynamical theory of x-ray diffraction. Acta. Crystallogr. A Found Adv. 72, 385 (2016).

    Article  CAS  Google Scholar 

  25. K. Li, H. Lian, M. Shang, and J. Lin, A novel greenish yellow-orange red Ba3Y4O9:Bi3+, Eu3+ phosphor with efficient energy transfer for UV-LEDs. Dalton Trans. 44, 20542 (2015).

    Article  CAS  Google Scholar 

  26. M. Dhanalakshmi, H. Nagabhushana, S.C. Sharma, R.B. Basavaraj, G.P. Darshan, and D. Kavyashree, Bio-template assisted solvothermal synthesis of broom-like BaTiO3:Nd3+ hierarchical architectures for display and forensic applications. Mater. Res. Bull. 102, 235 (2018).

    Article  CAS  Google Scholar 

  27. P. Kubelka, New contributions to the optics of intensely light-scattering materials part I. J. Opt. Soc. Am. 38, 448 (1948).

    Article  CAS  Google Scholar 

  28. A. Monshi, M.R. Foroughi, and M.R. Monshi, Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. WJNSE 02, 154 (2012).

    Article  Google Scholar 

  29. Z. Pan, H. Yu, H. Cong, H. Zhang, J. Wang, Q. Wang, Z. Wei, Z. Zhang, and R.I. Boughton, Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal. Appl. Opt. 51, 7144 (2012).

    Article  CAS  Google Scholar 

  30. M.S. Mendhe, S.P. Puppalwar, and S.J. Dhoble, Efficient energy transfer and fluorescence in SrYAl3O7:Ce3+, Tb3+ phosphor. Optik 166, 15 (2018).

    Article  CAS  Google Scholar 

  31. A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications. Dalton Trans. 44, 17166 (2015).

    Article  CAS  Google Scholar 

  32. Z. Fan, Z. Ye, Y. Qie, Y. Liu, Z. Shi, and H. Yang, The photoluminescence properties and latent photocatalytic hydrogen evolution application of AlN:Eu3+. J. Alloys Compd. 817, 152759 (2020).

    Article  CAS  Google Scholar 

  33. C. Suresh, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, D. Kavyashree, S.C. Sharma, A. Arulmozhi, B. Daruka Prasad, and H.J. Amith Yadav, Facile LaOF:Sm3+ based labeling agent and their applications in residue chemistry of latent fingerprint and cheiloscopy under UV–visible light. Arab. J. Chem. 11, 460 (2018).

    Article  CAS  Google Scholar 

  34. P. Sehrawat, A. Khatkar, P. Boora, A. Hooda, M. Kumar, R.K. Malik, S.P. Khatkar, and V.B. Taxak, A novel strategy for high color purity virescent Er3+-doped SrLaAlO4 nanocrystals for solid-state lighting applications. J Mater. Sci.: Mater. Electron. 31, 6072 (2020).

    CAS  Google Scholar 

  35. X. Huang and H. Guo, A novel highly efficient single-composition tunable white-light-emitting LiCa3MgV3O12:Eu3+ phosphor. Dyes Pigm. 154, 82 (2018).

    Article  CAS  Google Scholar 

  36. X. Huang and H. Guo, LiCa3MgV3O12:Sm3+: a new high-efficiency white-emitting phosphor. Ceram. Int. 44, 10340 (2018).

    Article  CAS  Google Scholar 

  37. P. Phogat, S.P. Khatkar, R.K. Malik, J. Dalal, A. Hooda, and V.B. Taxak, Crystallographic and Judd–Ofelt parametric investigation into Ca9Bi(VO4)7:Eu3+ nanophosphor for NUV-WLEDs. J. Lumin. 234, 117984 (2021).

    Article  CAS  Google Scholar 

  38. P. Phogat, S.P. Khatkar, R.K. Malik, J. Dalal, M. Punia, and V.B. Taxak, Crystal structure and photoluminescent analysis of bright orange-red emanating Sm3+-doped Ca9Bi(VO4)7 nanophosphor for WLEDs. J. Mater. Sci.: Mater. Electron. 32, 8615 (2021).

    CAS  Google Scholar 

  39. E.E. Campos-Zuñiga, I.L. Alonso-Lemus, V. Agarwal, and J. Escorcia-García, Sol-gel synthesis for stable green emission in samarium doped borosilicate glasses. Ceram. Int. 45, 24052 (2019).

    Article  Google Scholar 

  40. R. Cao, W. Wang, Y. Ren, Z. Hu, X. Zhou, Y. Xu, Z. Luo, and A. Liang, Synthesise, energy transfer and tunable emission properties of Ba2La2ZnW2O12:Sm3+ phosphors. J. Lumin. 235, 118054 (2021).

    Article  CAS  Google Scholar 

  41. R. Cao, X. Wang, X. Ouyang, Y. Jiao, Y. Li, H. Wan, W. Li, and Z. Luo, Thermally stable orange-red emitting Ba2SiO4:Sm3+ phosphor: synthesis and luminescence properties. J. Lumin. 224, 117292 (2020).

    Article  CAS  Google Scholar 

  42. S. Devi, A. Khatkar, V.B. Taxak, M. Dalal, S. Chahar, J. Dalal, and S.P. Khatkar, Optical properties of trivalent samarium-doped Ba5Zn4Y8O21 nanodiametric rods excitable by NUV light. J. Alloys Compd. 767, 409 (2018).

    Article  CAS  Google Scholar 

  43. T. Grzyb, R.J. Wiglusz, V. Nagirnyi, A. Kotlov, and S. Lis, Revised crystal structure and luminescent properties of gadolinium oxyfluoride Gd4O3F6 doped with Eu3+ ions. Dalton Trans. 43, 6925 (2014).

    Article  CAS  Google Scholar 

  44. G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444 (1968).

    Article  CAS  Google Scholar 

  45. H. Dalal, M. Kumar, P. Sehrawat, M. Sheoran, N. Sehrawat, S. Kumar, and R.K. Malik, Crystallographic and photophysical aspects of combustion derived novel Dy3+-activated BaSrGd4O8 nanophosphor for advanced solid-state lighting applications. J. Mater. Sci.: Mater. Electron 33, 13743 (2022).

    CAS  Google Scholar 

  46. M. Sheoran, P. Sehrawat, M. Kumar, and R.K. Malik, Crystal structure and optical analysis of new reddish-orange Sm3+ doped BaGd2ZnO5 nano-crystalline materials for multifunctional applications. Mater. Res. Bull. 145, 111522 (2022).

    Article  CAS  Google Scholar 

  47. A.A. Christy, O.M. Kvalheim, and R.A. Velapoldi, Quantitative analysis in diffuse reflectance spectrometry: a modified Kubelka–Munk equation. Vib. Spectrosc. 9, 19 (1995).

    Article  CAS  Google Scholar 

  48. F. Auzel, A fundamental self-generated quenching center for lanthanide-doped high-purity solids. J. Lumin. 100, 125 (2002).

    Article  CAS  Google Scholar 

  49. S. Devi, S. Kaushik, M. Kumar, H. Dalal, S. Gaur, and S. Kumar, Influence of Eu3+ doping on crystallographic and photophysical aspects of combustion synthesized BaSrY4O8 nanophosphor for photoelectronic appliances. Appl. Phys. A. 128, 23 (2022).

    Article  CAS  Google Scholar 

  50. S. Devi, M. Dalal, J. Dalal, A. Hooda, A. Khatkar, V.B. Taxak, and S.P. Khatkar, Near-ultraviolet excited down-conversion Sm3+-doped Ba5Zn4Gd8O21 reddish-orange emitting nano-diametric rods for white LEDs. Ceram. Int. 45, 7397 (2019).

    Article  CAS  Google Scholar 

  51. A. Siwach, M. Dalal, M. Dahiya, and D. Kumar, Ca9Gd(PO4)7:Sm3+—a novel single-phased down converting orange-red-emitting nanophosphor. J. Mater. Sci.: Mater. Electron. 31, 13796 (2020).

    CAS  Google Scholar 

  52. P. Sehrawat, A. Khatkar, P. Boora, J. Khanagwal, M. Kumar, R.K. Malik, S.P. Khatkar, and V.B. Taxak, Tailoring the tunable luminescence from novel Sm3+ doped SLAO nanomaterials for NUV-excited WLEDs. Chem. Phys. Lett. 755, 137758 (2020).

    Article  CAS  Google Scholar 

  53. S. Devi, V.B. Taxak, S. Chahar, M. Dalal, J. Dalal, A. Hooda, A. Khatkar, R.K. Malik, and S.P. Khatkar, Crystal chemistry and optical analysis of a novel perovskite type SrLa2Al2O7:Sm3+ nanophosphor for white LEDs. Ceram. Int. 45, 15571 (2019).

    Article  Google Scholar 

  54. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142 (1992).

    Article  Google Scholar 

  55. H. Dalal, P. Sehrawat, M. Sheoran, M. Kumar, and R.K. Malik, Optical, crystallographic and Judd-Ofelt analysis of europium doped Sr6Y2Al4O15 nanocrystals for NUV-WLED fabrication. J. Mater. Sci.: Mater. Electron. 33, 767 (2022).

    CAS  Google Scholar 

Download references

Funding

The author, Hina Dalal, received financial support from the University Grants Commission in the form of SRF (Award No. 49/(CSIR-UGC NET JUNE 2019)) to assist this research work properly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Malik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 171 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalal, H., Kumar, M., Kaushik, S. et al. Crystal Phase Recognition and Photoluminescence Behavior of Deep Reddish-Orange Sm3+-Activated Ca9Gd(VO4)7 Nanocrystals for Modern Solid-State Lightings. J. Electron. Mater. 52, 2780–2793 (2023). https://doi.org/10.1007/s11664-023-10241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10241-z

Keywords

Navigation