Skip to main content

Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments

  • Chapter
Electron Probe Quantitation

Abstract

Chemical characterization of individual microparticles is of importance to a number of applications including air pollution and occupational health research, pathology, geology and cosmochemistry (e.g., background tropospheric aerosols and interplanetary dust particles), experimental petrology, corrosion and pigments research, forensic chemistry, fallout and explosives studies, and a variety of materials research areas. A number of microbeam analysis techniques have proven useful for such chemical characterization (e.g., optical microscopy, laser Raman spectroscopy, LAMMA, ion microprobe analysis). One of the most commonly used techniques is x-ray emission analysis with electron microbeam instruments (electron microprobe, SEM, analytical electron microscope). Size distribution, morphometric, electron diffraction and qualitative elemental analysis of microparticles have become straightforward applications for electron microbeam instruments; however, quantitative elemental analysis of individual microparticles has remained one of the most difficult applications for these instruments and has been seriously pursued by relatively few researchers. This paper will consider analytical techniques and correction procedures to enable quantitative analysis of individual microparticles and the magnitude of analytical error to be expected in using these procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. T. Armstrong and P. R. Buseck (1975), Quantitative chemical analysis of individual microparticles using the electron microprobe: Theoretical, Anal. Chem. 47, 2178–2192.

    CAS  Google Scholar 

  2. J. T. Armstrong and P. R. Buseck (1985), A general characteristic fluorescence correction for the quantitative electron microbeam analysis of thick specimens, thin films and particles, X-Ray Spectrom. 14, 172–182.

    Article  CAS  Google Scholar 

  3. J. T. Armstrong (1978), Methods of quantitative analysis of individual microparticles with electron beam instruments, Scanning Electron Microscopy 1978, 1, 455–467.

    Google Scholar 

  4. J. A. Small (1981), Quantitative particle analysis in electron-beam instruments, Scanning Electron Microscopy 1981, 1, 447–461.

    Google Scholar 

  5. J. I. Goldstein (1979), Principles of thin film x-ray microanalysis, in Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds., Plenum Press, New York, 83–120.

    Chapter  Google Scholar 

  6. J. A. Small, K. F. J. Heinrich, C. E. Fiori, R. L. Myklebust, D. E. Newbury, and M. F. Dilmore (1978), The production and characterization of glass fibers and spheres for microanalysis, Scanning Electron Microscopy 1978, 1, 445–454.

    Google Scholar 

  7. J. A. Small, K. F. J. Heinrich, D. E. Newbury, and R. L. Myklebust (1979), Progress in the development of the peak-to-background method for the quantitative analysis of single particles with the electron probe, Scanning Electron Microscopy 1972, 2, 807–816.

    Google Scholar 

  8. J. A. Small, K. F. J. Heinrich, D. E. Newbury, R. L. Myklebust, and C. E. Fiori (1980), Procedure for the quantitative analysis of single particles with the electron probe, in Characterization of Particles, K. F. J. Heinrich, ed., NBS Spec. Publ. 460, 29–38.

    Google Scholar 

  9. P. J. Statham and J. B. Pawley (1978), New method for particle x-ray microanalysis based on peak to background measurements, Scanning Electron Microscopy 1978, 1, 469–478.

    Google Scholar 

  10. J. A. Small, S. D. Leigh, D. E. Newbury, and R. L. Myklebust (1986), Continuum radiation produced in pure-element targets by 10–40 keV electrons: An empirical model, in Microbeam Analysis-1986, A. D. Romig, Jr. and W. F. Chambers, eds., San Francisco Press, 289–291.

    Google Scholar 

  11. I] J. A. Small, D. E. Newbury, and R. L. Myklebust (1987), Test of a Bremsstrahlung equation for energy-dispersive x-ray spectrometers, in Microbeam Analysis-1987, R. H. Geiss, ed., San Francisco Press, 20–22.

    Google Scholar 

  12. J. T. Armstrong and P. R. Buseck (1975), The minimization of size and geometric effects in the quantitative analysis of microparticles with electron beam instruments, Proc. 10th Annual Conf., Microbeam Analysis Society, 9A-F.

    Google Scholar 

  13. J. T. Armstrong and P. R. Buseck (1977), Quantitative individual particle analysis: A comparison and evaluation of microprobe techniques, in Proc. VIII Int. Conf. on X-Ray Optics and X-Ray Microanal., 41A-H.

    Google Scholar 

  14. J. T. Armstrong (1980); Rapid quantitative analysis of individual microparticles using the a-factor approach, in Microbeam Analysis-1980, D. B. Wittry, ed., San Francisco Press, 193–198.

    Google Scholar 

  15. J. T. Armstrong (1982), New ZAF and a-factor correction procedures for the quantitative analysis of individual microparticles, in Microbeam Analysis-1982, K. F. J. Heinrich, ed., San Francisco Press, 175–180.

    Google Scholar 

  16. J. T. Armstrong (1984), Quantitative analysis of silicate and oxide minerals: A reevaluation of ZAF corrections and proposal for new Bence-Albee coefficients, in Microbeam Analysis-1984, A. D. Romig, Jr. and J. I. Goldstein, eds., San Francisco Press, 208–212.

    Google Scholar 

  17. J. T. Armstrong (1988), Quantitative analysis of silicate and oxide minerals: Comparison of Monte Carlo, ZAF, and 4(pz) procedures, in Microbeam Analysis-1988, D. E. Newbury, ed., San Francisco Press, 239–246.

    Google Scholar 

  18. H. M. Storms, K. H. Janssens, S. B. Torok, and R. E. Van Grieken (1989), Evaluation of the Armstrong-Buseck correction for automated electron probe x-ray microanalysis of particles, X-Ray Spectrom. 18, 45–52.

    Article  CAS  Google Scholar 

  19. W. Reuter (1972), The ionization function and its application to electron probe analysis of thin films, in Proc. 6th Int. Conf. X-Ray Optics and Microanalysis, G. Shinoda, K. Kohra, and T. Ichinokawa, eds., Univ. Tokyo Press, Tokyo, 121–130.

    Google Scholar 

  20. J. T. Armstrong (1978), Quantitative electron microprobe analysis of airborne particulate material, Ph.D. Thesis, Arizona State University.

    Google Scholar 

  21. R. H. Packwood and J. D. Brown (1981), A Gaussian expression to describe ¢(pz) curves for quantitative electron probe microanalysis, X-Ray Spectrom. 10, 138–146.

    Article  CAS  Google Scholar 

  22. J. D. Brown, R. H. Packwood, and K. Milliken (1981), Quantitative electron probe microanalysis with Gaussian expression for 49(pz) curves, in Microbeam Analysis-1981, R. H. Geiss, ed., San Francisco Press, 174.

    Google Scholar 

  23. G. Love, M. G. Cox, and V. D. Scott (1978), The surface ionisation function 0(0) derived using a Monte Carlo method, J. Phys. D 11, 23–31.

    Article  CAS  Google Scholar 

  24. K. F. J. Heinrich (1966), Electron probe microanalysis by specimen current measurement, in Optique des Rayons X et Microanalyse, R. Castaing, P. Deschamps, and J. Philibert, eds., Herman, Paris, 159–167.

    Google Scholar 

  25. G. Love and V. D. Scott (1978), Evaluation of a new correction procedure for quantitative electron probe microanalysis, J. Phys. D 11, 1369–1376.

    Article  CAS  Google Scholar 

  26. J. T. Armstrong (1988), Accurate quantitative analysis of oxygen and with a W/Si multilayer crystal, in Microbeam Analysis-1988, D. E. Newbury, ed., San Francisco Press, 301–304.

    Google Scholar 

  27. J. T. Armstrong (1988), Bence-Albee after 20 years: Review of the accuracy of the a-factor correction procedures for oxide and silicate minerals, in Microbeam Analysis-1988, D. E. Newbury, ed., San Francisco Press, 469–476.

    Google Scholar 

  28. K. F. J. Heinrich (1966), X-Ray absorption uncertainty, in The Electron Microprobe, T. D. McKinley

    Google Scholar 

  29. K. F. J. Heinrich, and D. B. Wittry, eds., John Wiley and Sons, New York, 297–377.

    Google Scholar 

  30. B. L. Henke and E. S. Ebisu (1974), Low energy x-ray and electron absorption within solids (100–1500 eV region), in Advances in X-ray Analysis, Vol. 17, C. L. Grant, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds., Plenum Press, New York, 150–213.

    Chapter  Google Scholar 

  31. S. J. B. Reed (1965), Characteristic fluorescence correction in electron-probe microanalysis, Brit. J. Appl. Phys. 16, 913–926.

    Article  CAS  Google Scholar 

  32. M. Green and V. E. Cosslett (1968), Measurements of K, L and M shell x-ray production efficiencies, J. Phys. D 1, 425–436.

    Article  Google Scholar 

  33. P. Duncumb and S. J. B. Reed (1968), The calculation of stopping power and backscatter effects in electron probe microanalysis, in Quantitative Electron Probe Microanalysis, K. F. J. Heinrich, ed., NBS Spec. Publ. 298, 133–154.

    Google Scholar 

  34. G. Love, M. G. Cox, and V. D. Scott (1978), A versatile atomic number correction for electron-probe microanalysis, J. Phys. D 11, 7–21.

    Article  CAS  Google Scholar 

  35. M. J. Berger and S. M. Seltzer (1964), Tables of energy losses and ranges of electrons and positrons, in Studies of Penetration of Charged Particles in Matter, National Academy of Sciences, National Research Council Publ. 1133, 205–268.

    Google Scholar 

  36. J. D. Brown and R. H. Packwood (1982), Quantitative electron probe microanalysis using Gaussian 4(pz) curves, X-Ray Spectrom. 11, 187–193.

    Article  CAS  Google Scholar 

  37. G. F. Bastin, F. J. J. van Loo, and H. J. M. Heijligers (1984), An evaluation of the use of Gaussian 4(pz) curves in quantitative electron probe microanalysis, X-Ray Spectrom. 13, 91–97.

    Article  CAS  Google Scholar 

  38. G. F. Bastin, H. J. M. Heijligers, and F. J. J. van Loo (1986), A further improvement in the Gaussian 4(pz) approach for matrix correction in quantitative electron probe microanalysis, Scanning 8, 45–67.

    Article  CAS  Google Scholar 

  39. J. D. Brown and L. Parobek (1976), X-ray production as a function of depth for low electron energies, X-Ray Spectrom. 5, 36–43.

    Article  CAS  Google Scholar 

  40. L. Parobek and J. D. Brown (1974), An experimental evaluation of the atomic number effect, in Advances in X-ray Analysis, Vol. 17, C. L. Grant, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds., Plenum Press, New York, 479–486.

    Chapter  Google Scholar 

  41. V. D. Scott and G. Love (1983), Quantitative Electron-Probe Microanalysis, Halsted Press, New York, see pg. 175–176.

    Google Scholar 

  42. J. Henoc, K. F. J. Heinrich, and R. L. Myklebust (1973), A Rigorous Correction Procedure for Quantitative Electron Probe Microanalysis (COR2), NBS Tech. Note 769.

    Google Scholar 

  43. J. Criss and L. S. Birks (1966), Intensity formulae for computer solution of multicomponent electron probe specimens, in The Electron Microprobe, T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds., John Wiley and Sons, New York, 217–236.

    Google Scholar 

  44. D. E. Newbury, R. L. Myklebust, K. F. J. Heinrich, and J. A. Small (1980), Monte Carlo electron trajectory simulation—an aid for particle analysis, in Characterization of Particles, K. F. J. Heinrich, ed., NBS Spec. Publ. 460, 39–62.

    Google Scholar 

  45. D. F. Kyser and K. Murata (1974), Quantitative electron microprobe analysis of thin films on substrates, IBM J. Res. Dev. 18, 352–363.

    CAS  Google Scholar 

  46. R. L. Myklebust, D. E. Newbury, and H. Yakowitz (1976), NBS Monte Carlo electron trajectory calculation program, in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz, eds., NBS Spec. Publ. 460, 105–128.

    Google Scholar 

  47. D. E. Newbury and H. Yakowitz (1976), Studies of the distribution of signals in the SEM/EMPA by Monte Carlo electron trajectory calculations—An outline, in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz, eds., NBS Spec. Publ. 460, 15–44.

    Google Scholar 

  48. Y. Ho, J. Chen, M. Hu, and X. Wang (1987), A calculation method for quantitative x-ray microanalysis for microparticle specimens by Monte Carlo simulation, Scanning Electron Micros. 1, 943–950.

    CAS  Google Scholar 

  49. L. Reimer and E. R. Krefting (1976), The effect of scattering models on the results of Monte Carlo calculations, in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz, eds., NBS Spec. Publ. 460, 45–60.

    Google Scholar 

  50. H. Bethe (1930), Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. Leipz. 5, 325–400.

    Article  CAS  Google Scholar 

  51. K. F. J. Heinrich (1981), Electron Beam X-Ray Microanalysis, Van Nostrand Reinhold, New York.

    Google Scholar 

  52. C. J. Powell (1976), Cross sections for ionization of inner-shell electrons by electrons, Rev. Mod. Phys. 48, 33–47.

    Article  CAS  Google Scholar 

  53. C. J. Powell (1976), Evaluation of formulas for inner-shell ionization cross sections, in Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, K. F. J. Heinrich, D. E. Newbury, and H. Yakowitz, eds., NBS Spec. Publ. 460, 97–104.

    Google Scholar 

  54. D. C. Joy (1984), Beam interactions, contrast, and resolution in the SEM, J. Microsc. 136, 241–258.

    Article  CAS  Google Scholar 

  55. T. S. Rao-Sahib and D. B. Wittry (1974), X-ray continuum from thick elemental targets for 10–50 keV, J. Appl. Phys. 45, 5060–5068.

    Article  CAS  Google Scholar 

  56. L. Curgenven and P. Duncumb (1971), Simulation of electron trajectories in a solid target by a simple Monte Carlo technique, Report No. 303, Tube Investments, Saffron Walden, England.

    Google Scholar 

  57. M. Green and V. E. Cosslett (1961), The efficiency of production of characteristic x-radiation in thick targets of a pure element, Proc. Phys. Soc. London 78, 1206–1214.

    Article  CAS  Google Scholar 

  58. G. A. Hutchins (1974), Electron probe microanalysis, in Characterization of Solid Surfaces, P. F. Kane and G. B. Larrabee, eds., Plenum Press, New York, 441–484.

    Chapter  Google Scholar 

  59. C. R. Worthington and S. G. Tomlin (1956), The intensity of emission of characteristic x-radiation, Proc. Phys. Soc. A 69, 401–412.

    Article  Google Scholar 

  60. M. Gryzinski (1965), Classical theory of atomic collisions: I. Theory of inelastic collisions, Phys. Rev. Sect. A 138, 336–358.

    CAS  Google Scholar 

  61. J. T. Armstrong and P. R. Buseck (1978), Applications in air pollution research of quantitative analysis of individual microparticles with electron beam instruments, in Electron Microscopy and X-Ray Applications to Environmental and Occupational Health Analysis, P. A. Russell and A. E. Hutchings, eds., Ann Arbor Science, Ann Arbor, 211–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Armstrong, J.T. (1991). Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments. In: Heinrich, K.F.J., Newbury, D.E. (eds) Electron Probe Quantitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2617-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2617-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2619-7

  • Online ISBN: 978-1-4899-2617-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics