Skip to main content

Advertisement

Log in

Vibrational spectra of four polycyclic aromatic hydrocarbons under high pressure: implications for stabilities of PAHs during accretion

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Infrared and Raman spectra of the polycyclic aromatic hydrocarbons (PAHs) naphthalene, anthracene, phenanthrene, and pyrene have been examined up to 10–55 GPa at 300 K, to probe structural changes in these materials under high-pressures, and to relate these to shock measurements on these materials. The goal is to develop an understanding of how such hydrocarbons might be processed during planetary accretion. A range of phase transitions in PAHs are observed and, in accord with previous investigations, these typically initiate at relatively low pressures (0.3–4.0 GPa): the lower-pressure transitions are likely associated with inter-molecular changes such as changes in symmetry and/or molecular orientation, charge transfer processes, or changes in π electron density, and are often sluggish. Higher-pressure (7–10 GPa) phase transitions in PAHs are likely associated with profound structural changes like dimerization, which are not always reversible. Laser-induced luminescence is encountered at pressures well below those at which PAHs amorphize, and a strong pressure-induced Fermi resonance is identified between the highest-lying inter-molecular modes and lowest-lying intra-molecular modes in each PAH examined. It is the increased strength of inter-molecular interactions under pressure that likely generates increasing overlap of π orbitals and leads to cross-linking (dimerization) of the molecules and the destruction of their planar symmetry. The first step in the amorphization of these compounds is likely dimerization, and amorphization occurs when long-range order is lost and a greater diversity of local structural environments is introduced into these materials, such as carbons being shared between rings, embayed structures, sp, sp2, and sp3 hybridized carbon atoms, a broad range of C–H bonding environments, and fewer residual resonance-stabilized C–C units. Our results are consistent with pressure producing amorphous, hydrogenated carbon material from PAH precursors: hence, impact phenomena, coupled with post-shock hydrogen loss, could provide an alternate pathway to produce amorphous carbon assemblages of the type observed within a range of meteorites. Additionally, smaller PAHs tend to be most stable under compression; as these are the most volatile of the PAHs, the combination of shock during accretion, coupled with trends in volatility, may limit the presence of PAHs within objects formed in the early solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abasbegovic N, Vukotic N, Colombo L (1964) Raman spectrum of anthracene. J Chem Phys 41:2575–2577

    Article  Google Scholar 

  • Abrahams SC, Robertson JM, White JG (1949) The crystal and molecular structure of naphthalene. I. X-ray measurements. Acta Crystallogr 2:233–238

    Article  Google Scholar 

  • Adams DM, Tan TK (1981) Vibrational spectroscopy at high pressures. Part 37.—Infrared spectrum of anthracene. J Chem Soc Faraday Trans 77:1711–1714

    Article  Google Scholar 

  • Alexander CMO’D, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403

    Article  Google Scholar 

  • Allamandola LJ, Tielens AGGM, Barker JR (1985) Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands-Auto exhaust along the Milky Way. Astrophys J 290:L25–L28

    Article  Google Scholar 

  • Allamandola LJ, Sandford SA, Wopenka B (1987) Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites. Science 237:56–59

    Article  Google Scholar 

  • Angus JC, Stultz JE, Shiller PJ, MacDonald JR, Mirtich MJ, Domitz S (1984) Composition and properties of “diamond-like” amorphous carbon films. Thin Solid Films 118:311–320

    Article  Google Scholar 

  • Aust RB, Bentley WH, Drickamer HG (1964) Behavior of fused-ring aromatic hydrocarbons at very high pressure. J Chem Phys 41:1856–1864

    Article  Google Scholar 

  • Bader RF (1990) Atoms in molecules. Wiley, New York

    Google Scholar 

  • Basile BP, Middleditch BS, Oró J (1984) Polycyclic aromatic hydrocarbons in the Murchison meteorite. Org Geochem 5:211–216

    Article  Google Scholar 

  • Benedetti LR, Nguyen JH, Caldwell WA, Liu H, Kruger M, Jeanloz R (1999) Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors. Science 286:100–102

    Article  Google Scholar 

  • Block S, Weir CE, Piermarini GJ (1970) Polymorphism in benzene, naphthalene, and anthracene at high pressure. Science 169:586–587

    Article  Google Scholar 

  • Botta O, Bada JL (2002) Extraterrestrial organic compounds in meteorites. Surv Geophys 23:411–467

    Article  Google Scholar 

  • Brearley AJ (1990) Carbon-rich aggregates in type 3 ordinary chondrites: characterization, origins, and thermal history. Geochim Cosmochim Acta 54:831–850

    Article  Google Scholar 

  • Bree A, Kydd RA (1968) Infrared spectrum of anthracene crystals. J Chem Phys 48:5319–5325

    Article  Google Scholar 

  • Bree A, Kydd RA (1970) Vibrational spectra and assignment of naphthalene-d8. Spectrochim Acta Part A 26:1791–1803

    Article  Google Scholar 

  • Bree A, Kydd RA, Mirsa TN, Vikos VVB (1971) The fundamental frequencies of pyrene and pyrene-d10. Spectrochim Acta Part A 27:2315–2332

    Article  Google Scholar 

  • Bree A, Solven FG, Vilkos VVB (1972) A vibrational analysis for phenanthrene. J Mol Spectrosc 44:289–319

    Google Scholar 

  • Bridgman PW (1938) Polymorphic transitions up to 50,000 kg/cm2 of several organic substances. Proc Natl Acad Sci USA 72:227–268

    Article  Google Scholar 

  • Bridgman PW (1945a) The compression of sixty-one solid substances to 25,000 kg/cm2, determined by a new rapid method. Proc Natl Acad Sci USA 76:9–24

    Google Scholar 

  • Bridgman PW (1945b) The compression of twenty-one halogen compounds and eleven other simple substances to 1,000,000 kg/cm2. Proc Natl Acad Sci USA 76:1–7

    Article  Google Scholar 

  • Bridgman PW (1948) Rough compressions of 177 substances to 40,000 kg/cm2. Proc Natl Acad Sci USA 76:71–87

    Article  Google Scholar 

  • Bridgman PW (1949) Further rough compressions to 40,000 kg/cm2, especially certain liquids. Proc Natl Acad Sci USA 77:129–146

    Article  Google Scholar 

  • Brock CP, Dunitz JD (1982) Temperature dependence of thermal motion in crystalline naphthalene. Acta Crystallogr Sec B 38:2218–2228

    Article  Google Scholar 

  • Brock CP, Dunitz JD (1990) Temperature dependence of thermal motion in crystalline anthracene. Acta Crystallogr Sec B 46:795–806

    Article  Google Scholar 

  • Butenko YV, Kuznetsov VL, Chuvilin AL, Kolomiichuk VN, Stankus SV, Khairulin RA, Segall B (2000) Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J Appl Phys 88:4380–4388

    Article  Google Scholar 

  • Califano S (1962) Infrared spectra in polarized light and vibrational assignment of the infrared active modes of anthracene and anthracene-d10. J Chem Phys 36:903–909

    Article  Google Scholar 

  • Califano S, Abbondanza G (1963) Infrared spectra in polarized light and vibrational assignment of the infrared-active modes of pyrene and pyrene-d10. J Chem Phys 39:1016–1023

    Article  Google Scholar 

  • Camerman A, Trotter J (1965) The crystal and molecular structure of pyrene. Acta Crystallogr 18:636–643

    Article  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    Article  Google Scholar 

  • Ciabini L, Santoro M, Bini R, Schettino V (2002) High pressure reactivity of solid benzene probed by infrared spectroscopy. J Chem Phys 116:2928–2935

    Article  Google Scholar 

  • Ciabini L, Gorelli FA, Santoro M, Bini R, Schettino V, Mezouar M (2005) High-pressure and high-temperature equation of state and phase diagram of solid benzene. Phys Rev B 72:094108

    Article  Google Scholar 

  • Ciabini L, Santoro M, Gorelli FA, Bini R, Schettino V, Raugei S (2006) Triggering dynamics of the high-pressure benzene amorphization. Nat Mater 6:39–43

    Article  Google Scholar 

  • Citroni M, Bini R, Foggi P, Schettino V (2008) Role of excited electronic states in the high-pressure amorphization of benzene. Proc Natl Acad Sci USA 105:7658–7663

    Article  Google Scholar 

  • Cronin JR, Pizzarello S, Frye JS (1987) 13C NMR spectroscopy of the insoluble carbon of carbonaceous meteorites. Geochim Cosmochim Acta 51:299–303

    Article  Google Scholar 

  • d’Hendecourt L, Ehrenfreund P (1997) Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. Adv Space Res 19:1023–1032

    Article  Google Scholar 

  • Dick RD (1970) Shock wave compression of benzene, carbon disulfide, carbon tetrachloride, and liquid nitrogen. J Chem Phys 52:6021–6032

    Article  Google Scholar 

  • Dick RD (1979) Shock compression data for liquids. I. Six hydrocarbon compounds. J Chem Phys 71:3203–3212

    Article  Google Scholar 

  • Dischler B, Bubenzer A, Koidl P (1983) Bonding in hydrogenated hard carbon studied by optical spectroscopy. Solid State Commun 48:105–108

    Article  Google Scholar 

  • Dreger ZA, Balasubramaniam E, Gupta YM, Joly AG (2009) High-pressure effects on the electronic structure of anthracene single crystals: role of nonhydrostaticity. J Phys Chem A 113:1489–1496

    Article  Google Scholar 

  • Drickamer HG (1967) Pi electron systems at high pressure. Science 156:1183–1189

    Article  Google Scholar 

  • Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Ann Rev Astron Astrophys 38:427–483

    Article  Google Scholar 

  • Elnahwy S, El Hamamsy M, Damask AC, Cox DE, Daniels WB (1978) Pressure dependence of the lattice parameters of anthracene up to 5.4 kbar and a re-evaluation of the elastic constants. J Chem Phys 68:1161–1163

    Article  Google Scholar 

  • Engelke R, Blais NC (1994) Chemical dimerization of crystalline anthracene produced by transient high pressure. J Chem Phys 101:10961–10972

    Article  Google Scholar 

  • Fabbiani FPA, Allan DR, David WIF, Moggach SA, Parsons S, Pulham CR (2004) High-pressure recrystallization—a route to new polymorphs and solvates. Cryst Eng Comm 6:504–511

    Article  Google Scholar 

  • Fabbiani FPA, Allan DR, Parsons S, Pulham CR (2006) Exploration of the high-pressure behaviour of polycyclic aromatic hydrocarbons: naphthalene, and pyrene. Acta Crystallogr B 62:826–842

    Article  Google Scholar 

  • Farina L, Syassen K, Brillante A, Della Valle RG, Venuti E, Karl N (2003) Pentacene at high pressure. High Press Res 23:349–354

    Article  Google Scholar 

  • Finke HL, Messerly JF, Lee SH, Osborn AG, Douslin DR (1977) Comprehensive thermodynamic studies of seven aromatic hydrocarbons. J Chem Thermodyn 9:937–956

    Article  Google Scholar 

  • Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Phys Chem 20:722–725

    Article  Google Scholar 

  • Gao G, Oganov AR, Ma Y, Wang H, Li P, Li Y, Iitaka T, Zou G (2010) Dissociation of methane under high pressure. J Chem Phys 133:144508

    Article  Google Scholar 

  • Gardinier A, Derenne S, Robert F, Behar F, Largeau C, Maquet J (2000) Solid state CP/MAS 13C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study. Earth Planet Sci Lett 184:9–21

    Article  Google Scholar 

  • Garvie LA, Buseck PR (2004) Nanosized carbon-rich grains in carbonaceous chondrite meteorites. Earth Planet Sci Lett 224:431–439

    Article  Google Scholar 

  • Garvie LA, Buseck PR (2006) Carbonaceous materials in the acid residue from the Orgueil carbonaceous chondrite meteorite. Meteorit Planet Sci 41:633–642

    Article  Google Scholar 

  • Geerlings P, Ayers PW, Toro-Labbe A, Chattaraj AK, De Proft F (2012) The Woodward–Hoffmann rules reinterpreted by conceptual density functional theory. Acc Chem Res 45:683–695

    Article  Google Scholar 

  • Godec J, Colombo L (1976) Interpretation of the vibrational spectrum of crystalline phenanthrene. J Chem Phys 65:4693–4700

    Article  Google Scholar 

  • Gonikberg MG, Shakhovskoi GP, Petrov AA (1966) Polymorphic transformations of certain aromatic hydrocarbons at high pressures. Russ J Phys Chem 40:1345–1348

    Google Scholar 

  • Hamann SD (1978) Infrared spectra and phase transitions of solids under pressure: 9. High Temp High Press 10:503–510

    Google Scholar 

  • Hancock RD, Nikolayenko IV (2012) Do nonbonded H–H interactions in phenanthrene stabilize it relative to anthracene? A possible resolution to this question and its implications for ligands such as 2,2′-bipyridyl. J Phys Chem A 116:8572–8583

    Article  Google Scholar 

  • Hanfland M, Hemley RJ, Mao HK, Williams GP (1992) Vibrational dynamics of hydrogen to 180 GPa. Phys Rev Lett 69:1129–1132

    Article  Google Scholar 

  • Harvey RG (1991) Polycyclic aromatic hydrocarbons. Wiley-VCH, New York

    Google Scholar 

  • Hemley RJ, Dera P (2000) Molecular crystals. Rev Miner Geochem 41:335–419

    Article  Google Scholar 

  • Hillier NJ, Schilling JS (2014) Search for metallization in benzene to 209 GPa pressure. High Pressure Res 34:1–8

    Article  Google Scholar 

  • Huang QW, Zhang J, Berlie A, Qin ZX, Zhao XM, Zhang JB, Tang LY, Liu J, Zhang C, Zhong GH, Lin HQ, Chen XJ (2013) Structural and vibrational properties of phenanthrene under pressure. J Chem Phys 139:104302

    Article  Google Scholar 

  • Huss GR, Meshik AP, Smith JB, Hohenberg CM (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim Cosmochim Acta 67:4823–4848

    Article  Google Scholar 

  • Jennings E, Montgomery W, Lerch P (2010) Stability of coronene at high temperature and pressure. J Phys Chem B 114:15753–15758

    Article  Google Scholar 

  • Jones PF, Nicol M (1968) Excimer emission of naphthalene, anthracene, and crystals produced by very high pressures. J Chem Phys 48:5440–5447

    Article  Google Scholar 

  • Knittle E, Phillips W, Williams Q (2001) An infrared and Raman spectroscopic study of gypsum at high pressures. Phys Chem Miner 28:630–640

    Article  Google Scholar 

  • Le Guillou C, Rouzaud JN, Bonal L, Quirico E, Derenne S, Remusat L (2012) High resolution TEM of chondritic carbonaceous matter: metamorphic evolution and heterogeneity. Meteorit Planet Sci 47:345–362

    Article  Google Scholar 

  • Leger JM, Aloualiti H (1991) X-ray study of anthracene under high pressure. Solid State Commun 79:901–904

    Article  Google Scholar 

  • Likhacheva AY, Rachchenko SV, Litasov KD (2014) High-pressure structural properties of naphthalene up to 6 GPa. J Appl Crystallogr 47:984–991

    Article  Google Scholar 

  • Lippincott ER, O’Reilly EJ Jr (1955) Vibrational spectra and assignment of naphthalene and naphthalene-d-8. J Chem Phys 23:238–244

    Article  Google Scholar 

  • Mao HK, Xu JA, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Mathieson AMcL, Robertson JM, Sinclair VC (1950) The crystal and molecular structure of anthracene. I. X-ray measurements. Acta Crystallogr 3:245–250

    Article  Google Scholar 

  • Matta CF, Hernandez-Trujillo J, Tang T-H, Bader RFW (2003) Hydrogen–hydrogen bonding: a stabilizing interaction in molecules and crystals. Chem Eur J 9:940–951

    Google Scholar 

  • McCullough JP, Finke HL, Messerly JF, Todd SS, Kincheloe TC, Waddington G (1957) The low-temperature thermodynamic properties of naphthalene, l-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene. J Phys Chem 61:1105–1116

    Article  Google Scholar 

  • Meletov KP (1990) Influence of pressure on configurational mixing in naphthalene crystal. Phys Solid State 32:1730–1733

    Google Scholar 

  • Meletov KP (1991) Investigation of the resonant intermolecular interaction in a naphthalene crystal at high pressures. Phys Solid State 33:253–257

    Google Scholar 

  • Meletov KP (2013) Phonon spectrum of a naphthalene crystal at a high pressure: influence of shortened distances on the lattice and intramolecular vibrations. Phys Solid State 55:581–588

    Article  Google Scholar 

  • Messenger S, Amari S, Gao X, Walker RM, Clemett SJ, Chillier XDF, Zare RN, Lewis RS (1998) Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites. Astrophys J 502:284

    Article  Google Scholar 

  • Mimura K (1995) Synthesis of polycyclic aromatic hydrocarbons from benzene by shock impact: its reaction mechanism and cosmochemical significance. Geochim Cosmochim Acta 59:579–591

    Article  Google Scholar 

  • Mimura K, Toyama S (2005) Behavior of polycyclic aromatic hydrocarbons at impact shock: its implication for survival of organic materials delivered to the early Earth. Geochim Cosmochim Acta 69:201–209

    Article  Google Scholar 

  • Mimura K, Ohashi M, Sugisaki R (1995) Hydrocarbon gases and aromatic hydrocarbons produced by impact shock from frozen benzene: cosmochemical significance. Earth Planet Sci Lett 133:265–269

    Article  Google Scholar 

  • Mimura K, Arao T, Sugiura M, Sugisaki R (2003) Shock-induced carbonization of phenanthrene at pressures of 7.9–32 GPa. Carbon 41:2547–2553

    Article  Google Scholar 

  • Mimura K, Madono T, Toyama S, Sugitani K, Sugisaki R, Iwamatsu SI, Murata S (2004) Shock-induced pyrolysis of naphthalene and related polycyclic aromatic hydrocarbons (anthracene, pyrene, and fluoranthene) at pressures of 12–33.7 GPa. J Anal Appl Pyrolysis 72:273–278

    Article  Google Scholar 

  • Mimura K, Toyama S, Sugitani K (2005) Shock-induced dehydrogenation of polycyclic aromatic hydrocarbons with or without serpentine: Implications for planetary accretion. Earth Planet Sci Lett 232:143–156

    Article  Google Scholar 

  • Mitra SS, Bernstein HJ (1959) Vibrational spectra of naphthalene-d0,-α-d4, and-d8 molecules. Can J Chem 37:553–562

    Article  Google Scholar 

  • Nasdala L, Pekov IV (1993) Ravatite, C14H10, a new organic mineral species from Ravat, Tadzhikistan. Eur J Miner 5:699–705

    Article  Google Scholar 

  • Neto M, Scrocco M, Califano S (1966) A simplified valence force field of aromatic hydrocarbons-I. Spectrochim Acta 22:1981–1998

    Article  Google Scholar 

  • Nicol M, Vernon M, Woo JT (1975) Raman spectra and defect fluorescence of anthracene and naphthalene crystals at high pressures and low temperatures. J Chem Phys 63:1992–1999

    Article  Google Scholar 

  • O’Bannon EF, Beavers CM, Williams Q (2014) Trona at extreme conditions: a pollutant-sequestering material at high pressures and low temperatures. Am Miner 99:1973–1984

    Article  Google Scholar 

  • Oehzelt M, Heimel G, Resel R, Puschnig P, Hummer K, Ambrosch-Draxl C, Takemura K, Nakayama A (2003) High pressure X-ray study on anthracene. J Chem Phys 119:1078–1084

    Article  Google Scholar 

  • Oehzelt M, Aichholzer A, Rezel R, Heimel G, Venuti E, Della Valle RG (2006) Crystal structure of oligoacenes under high pressure. Phys Rev B 74:104103

    Article  Google Scholar 

  • Offen HW (1966) Fluorescence spectra of several aromatic crystals under high pressures. J Chem Phys 44:699–703

    Article  Google Scholar 

  • Ohta N, Ito M (1977) Vibronic coupling and Raman intensity of naphthalene and anthracene. Chem Phys 20:71–81

    Article  Google Scholar 

  • Pering KL, Ponnamperuma C (1971) Aromatic hydrocarbons in the Murchison meteorite. Science 173:237–239

    Article  Google Scholar 

  • Person WB, Pimentel GC, Schnepp O (1955) Infrared studies of naphthalene and naphthalene-d8. J Chem Phys 23:230–233

    Article  Google Scholar 

  • Petrícek V, Císarová I, Hummel L, Kroupa J, Brezina B (1990) Orientational disorder in phenanthrene. Structure determination at 248, 295, 339 and 344 K. Acta Crystallogr Sect B 46:830–832

    Article  Google Scholar 

  • Pimentel GC, McClellan AL, Person WB, Schnepp O (1955) Interpretation of the infrared spectrum of a molecular crystal: naphthalene. J Chem Phys 23:234–237

    Article  Google Scholar 

  • Piotrovskii GL (1955) Karpatite (Carpathite)—a new organic mineral from trans-carpathia. Mineralogicheskii Sbornik 9:120–127

    Google Scholar 

  • Pucci R, March NH (1981) Liquid crystal model for hydrocarbons under shock wave conditions. J Chem Phys 74:1373–1378

    Article  Google Scholar 

  • Pufall R, Kalus J (1988) X-ray powder diffraction of anthracene at hydrostatic pressures up to 0.9 GPa. Acta Crystallogr Sect A 44:1059–1065

    Article  Google Scholar 

  • Radomska M, Radomski R (1980) Calorimetric studies of binary systems of 1,3,5-trinitrobenzene with naphthalene, anthracene and carbazole. I. Phase transitions and heat capacities of the pure components and charge-transfer complexes. Thermochim Acta 40:405–414

    Article  Google Scholar 

  • Räsänen J, Stenman F, Penttinen E (1973) Raman scattering from molecular crystals—II. Anthracene. Spectrochim Acta Part A 29:395–403

    Article  Google Scholar 

  • Rastogi S (2005) Polycyclic aromatic hydrocarbons in interstellar medium. Bull Astron Soc India 33:167

    Google Scholar 

  • Ree FH (1979) Systematics of high-pressure and high-temperature behavior of hydrocarbons. J Chem Phys 70:974–983

    Article  Google Scholar 

  • Robertson JM, White JG (1947) The crystal structure of pyrene. A quantitative X-ray investigation. J Chem Soc 1:358–368

    Article  Google Scholar 

  • Schettino V, Neto N, Califano S (1966) Crystal spectra in polarized light, vibrational assignment, and force-constant calculations of phenanthrene. J Chem Phys 44:2724–2734

    Article  Google Scholar 

  • Silva SRP (2003) Properties of amorphous carbon. INSPEC, London

    Google Scholar 

  • Silva SRP, Carey JD, Khan RUA, Gerstner EG, Anguita JV (2002) Amorphous carbon thin films. In: Nalwa HS (ed) Handbook of thin film materials, vol 4. Academic Press, New York

    Google Scholar 

  • Smith NK, Stewart RC Jr, Osborn AG, Scott DW (1980) Pyrene: vapor pressure, enthalpy of combustion, and chemical thermodynamic properties. J Chem Thermodyn 12:919–926

    Article  Google Scholar 

  • Sun B, Dreger ZA, Gupta YM (2008) High-pressure effects in pyrene crystals: vibrational spectroscopy. J Phys Chem A 112:10546–10551

    Article  Google Scholar 

  • Sun L, Yi W, Wang L, Shu J, Sinogeikin S, Meng Y, Shen G, Bai L, Li Y, Liu J, Mao H, Mao WL (2009) X-ray diffraction studies and equation of state of methane at 202 GPa. Chem Phys Lett 473:72–74

    Article  Google Scholar 

  • Suzuki M, Yokoyama T, Ito M (1966) Polarized Raman spectra of naphthalene and anthracene single crystals. Spectrochim Acta Part A 24:1091–1107

    Article  Google Scholar 

  • Trotter J (1963) The crystal and molecular structure of phenanthrene. Acta Crystallogr 16:605–608

    Article  Google Scholar 

  • Tyburczy JA, Duffy TS, Ahrens TJ, Lange MA (1991) Shock wave equation of state of serpentine to 150 GPa: implications for the occurrence of water in Earth’s lower mantle. J Geophys Res 96:18011–18027

    Article  Google Scholar 

  • Vaidya SN, Kennedy GC (1971) Compressibility of 18 molecular organic solids to 45 kbar. J Chem Phys 55:987–992

    Article  Google Scholar 

  • Warnes RH (1970) Shock wave compression of three polynuclear aromatic compounds. J Chem Phys 53:1088–1094

    Article  Google Scholar 

  • Zallen R, Griffiths CH, Slade ML, Hayek M, Brafman O (1976) The solid state transition in pyrene. Chem Phys Lett 39:85–89

    Article  Google Scholar 

  • Zhao L, Baer BJ, Chronister EL (1999) High-pressure Raman study of anthracene. J Phys Chem A 103:1728–1733

    Article  Google Scholar 

  • Zhao M, Wang K, Men Z, Gao S, Li Z, Sun C (2012) Study of high-pressure Raman intensity behavior of aromatic hydrocarbons: benzene, biphenyl, and naphthalene. Spectrochim Acta Part A 97:526–531

    Article  Google Scholar 

  • Zhao XM, Zhang J, Berlie A, Qin ZX, Huang QW, Jiang S, Zhang JB, Tang LY, Liu J, Zhang C, Zhong GH, Lin HQ, Chen XJ (2013) Phase transformations and vibrational properties of coronene under pressure. J Chem Phys 139:144308

    Article  Google Scholar 

  • Zolotov MY, Shock EL (2001) Stability of condensed hydrocarbons in the solar nebula. Icarus 150:323–337

    Article  Google Scholar 

Download references

Acknowledgments

Helpful discussions with C. V. Stan and C. M. Beavers greatly improved the quality of this manuscript. We thank Dan Sampson for invaluable technical assistance with the FTIR and Raman spectrometers. We also thank a reviewer for helpful comments. Work partially supported by NSF through EAR-1215745, and COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 11-57758.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl O’Bannon III.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Bannon, E., Williams, Q. Vibrational spectra of four polycyclic aromatic hydrocarbons under high pressure: implications for stabilities of PAHs during accretion. Phys Chem Minerals 43, 181–208 (2016). https://doi.org/10.1007/s00269-015-0786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0786-1

Keywords

Navigation