Skip to main content
Log in

Thermal behaviour of β-anhydrite CaSO4 to 1,263 K

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermal behaviour of β-anhydrite CaSO4 has been investigated to 1,263 K in-situ real-time using laboratory parallel-beam X-ray powder diffraction data. The cell parameters expanded anisotropically, the c axis being the “softest”. This behaviour is due to the deformation of the CaO8 polyhedron. In fact the two longest, independent, Ca–O bond distances show a significant component along the z direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Breese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197

    Google Scholar 

  • Downs RT, Gibbs GV, Bartelmehs KL, Boisen Jr MB (1992) Variations of bond lengths and volumes of silicate tetrahedral with temperature. Am Min 77:751–757

    Google Scholar 

  • Evans Jr HT (1979) The thermal expansion of anhydrite to 1000°C. Phys Chem Minerals 4:77–82

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants, vol 2. American Geophysical Union, Washington, pp 29–44

    Google Scholar 

  • Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Cryst 27:892–900

    Article  Google Scholar 

  • Hawthorne FC, Ferguson RB (1975) Anhydrous sulphates. II. Refinement of the crystal structure of anhydrite. Can Mineral 13:289–292

    Google Scholar 

  • Khan AA (1976) Computer simulation of thermal expansion of non-cubic crystals: forsterite, anhydrite and scheelite. Acta Cryst A32:11–16

    Google Scholar 

  • Kirfel A, Will G (1980) Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Cryst B36:2881–2890

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS-General Structure Analysis System. Los Alamos National Laboratory Report No. LAUR 86–748. Los Alamos National Laboratory, Los Alamos

  • Morikawa H, Minato I, Tomita T, Iwai S (1975) Anhydrite: a refinement. Acta Cryst B31:2164–2165

    Google Scholar 

  • Reeber RR, Goessel K, Wang K (1995) Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K. Eur J Mineral 7:1039–1047

    Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz mineralogical tables, 9th edn. Schweizerbart’sche, Stuttgard, 870 p

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Cryst 20:79–83

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Article  Google Scholar 

  • Von Dreele RB (1997) Quantitative texture analysis by Rietveld refinement. J Appl Cryst 30:517–525

    Article  Google Scholar 

  • Young RA. (1993) Introduction to the Rietveld method. In: Young RA (ed) The Rietveld method. Oxford Science, Oxford, pp 1–38

Download references

Acknowledgments

We thank F. Scordari, two anonymous referees, and Editor P.C. Burnley for their constructive reviews of the paper. This work was supported by Università di Roma “La Sapienza”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ballirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballirano, P., Melis, E. Thermal behaviour of β-anhydrite CaSO4 to 1,263 K. Phys Chem Minerals 34, 699–704 (2007). https://doi.org/10.1007/s00269-007-0186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0186-2

Keywords

Navigation