Skip to main content
Log in

In situ time resolved synchrotron powder diffraction study of thaumasite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Structural changes during dehydration and subsequent decomposition in thaumasite Ca3Si(SO4)(CO3)(OH)6·12 H2O were studied by in situ synchrotron powder diffraction between 303 and 1,098 K. Evolution of the crystal structure was observed through 28 structure refinements, by full profile Rietveld analysis performed in the P63 space group, between 300 and 417 K, whereupon the thaumasite structure was observed to breakdown. Within this temperature range, the cell parameters of thaumasite increased as a function of temperature in a nearly linear fashion up to about 393 K, at which temperature, a slight slope change was observed. Above 400 K, the thermogravimetric analysis revealed that the dehydration process proceeded very rapidly while the refined occupancy of water molecules dropped below a critical level, leading to instability in the thaumasite structure. At a same time, a remarkable change in the unit cell parameters occurring at about 417 K indicated that the crystal structure of thaumasite collapsed on losing the crystallization water and it turned amorphous. This result indicated that the dehydration/decomposition of thaumasite was induced by the departure of the crystallization water. At about 950 K, anhydrite and cristobalite crystallized from the thaumasite glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angel RJ, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 Gpa and 1800°C. Am Mineral 74:509–512

    Google Scholar 

  • Barnett SJ, Adam CD, Jackson ARW (2000) Solid solutions between ettringite, Ca6Al2(SO4)3 (OH)12·26 H2O, and thaumasite Ca3SiSO4CO3(OH)6·12 H2O. J Mater Sci 35:4109–4114

    Article  Google Scholar 

  • Bensted J (1999) Thaumasite—background and nature in deterioration of cements, mortars and concretes. Cem Concr Compos 21:117–121

    Article  Google Scholar 

  • Brough AR, Atkinson A (2001) Micro-Raman spectroscopy of Thaumasite. Cem Concr Compos 31:421–424

    Google Scholar 

  • Carpenter AB (1963) Oriented overgrowths of Thaumasite on Ettringite. Am Miner 48:1394–1396

    Google Scholar 

  • Crammond NJ (1985) Thaumasite in failed cement mortars and renders from exposed brickwork. Cem Concr Res 15:1039–1050

    Article  Google Scholar 

  • Drábik M, Gáliková L (2003) Method of thermal analysis in the detection of thaumasite and its presence in the sulphate-attacked concrete. Solid State Phenomena 90–91:33–38

    Article  Google Scholar 

  • Edge RA, Taylor FW (1971) Crystal structure of Thaumasite, [Ca3Si(OH)6·12 H2O](SO4)(CO3). Acta Cryst B27:594–601

    Google Scholar 

  • Effenberger H, Kirfel A, Will G, Zobetz E (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6CO3 SO4·12 H2O. N Jb Miner Mh 2:60–68

    Google Scholar 

  • Federico M (1970) Un inconsueto deposito di thaumasite fra i tufi del cratere di Prata Porci (Colli Albani). Miner Mag 32:567–572

    Google Scholar 

  • Fei Y (1995) AGU reference shelf 2: mineral physics and crystallography—a handbook of physical constants. In: Ahrens TJ (ed) AGU, Washington, pp 29–44

  • Font-Altaba M (1960) A thermal study of thaumasite. Mineral Mag 32:567–572

    Google Scholar 

  • Frost DJ, Fei Y (1998) Stability of phase D at high pressure and high temperature. J Geophys Res 103:7463–7474

    Article  Google Scholar 

  • Giampaolo C (1986) Dehydration kinetics of thaumasite at ambient pressure. N Jb Miner Mh Jg H 3:126–134

    Google Scholar 

  • Granger MM, Protas J (1969) Détermination et étude de la structure crystalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)6·12 H2O. Acta Crystallogr B 25:1943–1951

    Article  Google Scholar 

  • Grubessi O, Mottana A, Paris E (1986) Thaumasite from the Tschwinning [N’Chwaning] mine, South Africa. Tschermaks Mineral Petrog Mitt 35:149–156

    Article  Google Scholar 

  • Horiuchi H, Hirano M, Ito E, Matsui Y (1982) MgSiO3 (ilmenitetype): single-crystal X-ray diffraction study. Am Mineral 67:788–793

    Google Scholar 

  • Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: single-crystal X-ray diffraction study. Am Mineral 72:357–360

    Google Scholar 

  • Hurlbut CS, Baum JL (1960) Ettringite from Franklin, New Jersey. Am Mineral 45:1137–1143

    Google Scholar 

  • Jacobsen SD, Smyth JR, Swope RJ (2003) Thermal expansion of hydrated six-coordinate silicon in thaumasite, Ca3Si(OH)6 (CO3) (SO4) 12 H2O. Phys Chem Miner 30:321–329

    Article  Google Scholar 

  • Kirov GN, Poulieff CN (1968) On the infra-red spectrum and thermal decomposition products of thaumasite, Ca3H2(CO3/SO4)SiO4·13 H2O. Mineral Mag 36:1003–1011

    Google Scholar 

  • Knill DC (1960) Thaumasite from County Down, Northern Ireland. Mineral Mag 32:416–418

    Google Scholar 

  • Lachaud R (1979) Thaumasite and ettringite in construction materials. Annales de l’Institut du Batiment et des Travaux Publics 32:370–373

    Google Scholar 

  • Larson AC, Von Dreel RB (2000) GSAS general structure analysis system. Report LAUR. Los Alamos National Laboratory, Los Alamos, pp 86–748

    Google Scholar 

  • McDonald AM, Peterson OV, Gault RA, Johnsen O, Niedermayr G, Branstätter F (2001) Micheelsenite, (Ca, Y)3Al(PO3OH, CO3)(CO3)(OH)6·12 H2O, a new mineral from Mont Saint-Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland. Neues Jahrbuch Mineralogie Monatshefte 8:337–351

    Google Scholar 

  • Merlino S, Orlandi P (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. Am Mineral 86:1293–1301

    Google Scholar 

  • Noack Y (1983) Occurrence of thaumasite in a seawater–basalt interaction, Mururoa atoll (French Polynesia, South Pacific). Mineral Mag 47:47–50

    Google Scholar 

  • Norby P (1997) Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld refinement. J Appl Cryst 30:21–30

    Article  Google Scholar 

  • Peters JJ (1984) Triassic Traprock minerals of New Jersey. Rocks Miner 59:157–183

    Google Scholar 

  • Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Reviews in mineralogy, vol 11. Mineralogical Society of America, pp 1–47

  • Ross NL, Shu JF, Hazen RM (1990) High-pressure crystal chemistry of stishovite. Am Mineral 75:739–747

    Google Scholar 

  • Vogt T (1938) Thaumasite from Sulitelma, Norway. Norsk Geol Tidskr 18:291–303

    Google Scholar 

  • Yang H, Prewitt CT, Frost DJ (1997) Crystal structure of the dense hydrous magnesium silicate, phase D. Am Mineral 82:651–654

    Google Scholar 

  • Zemann J, Zobetz E (1981) Do the carbonate groups in thaumasite have anomalously large deviations from coplanarity? Kristallografija 26:1215–1217

    Google Scholar 

Download references

Acknowledgments

We are indebted to Carlo Meneghini (University of Rome) and Marco Merlini (University of Milan) for their assistance during the experiments at the BM08 (GILDA) beamline (ESRF, Grenoble, France) and the processing of the Translating Imaging Plate data. We thank the referees for the careful reviews and for many useful comments and suggestions. The Italian CNR and INFM are also acknowledged for providing financial support to GILDA and its associated facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Martucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martucci, A., Cruciani, G. In situ time resolved synchrotron powder diffraction study of thaumasite. Phys Chem Minerals 33, 723–731 (2006). https://doi.org/10.1007/s00269-006-0124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0124-8

Keywords

Navigation