Skip to main content
Log in

In situ high-temperature XRD and FTIR investigation of hohmannite, a water-rich Fe-sulfate, and its decomposition products

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal dehydration of hohmannite, Fe2[O(SO4)2]·8H2O, a secondary iron-bearing hydrous sulfate, was investigated by in situ high-temperature X-ray powder diffraction and in situ high-temperature Fourier transform infrared spectroscopy. Combination of the data from both techniques allowed determining the stability fields and reaction paths for this mineral and its high temperature products. Five main dehydration/transformation steps for hohmannite have been identified in the heating range of 25–800 °C. Temperature behavior of the different phases was analyzed, and the heating-induced structural changes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bai H, Kang Y, Quan H, Han Y, Sun J, Feng Y. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresour Technol. 2013;128:818–22.

    Article  CAS  Google Scholar 

  2. Fitzpatrick RW, Fritsch E, Self PG. Interpretation of soil features produced by ancient and modern process in degraded landscapes; V. Development of saline sulfidic features in non-tidal seepage areas. Geoderma. 1996;69:1–29.

    Article  CAS  Google Scholar 

  3. Glombitza C, Stockhecke M, Schubert CJ, Vetterand A, Kallmeyer J. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Front Microbiol. 2013. doi: 10.3389/fmicb.2013.00209.

  4. Wayne K. Hypogene Karst and sulfate diagenesis of the Delaware Basin: Southeastern New Mexico and Far West Texas, Ph.D Thesis, New Mexico Institute of Mining and Technology, Socorro, New Mexico. 2008.

  5. Lawrence RW, Marchant PB, Bratty M, Kratochvil D. Applications for biogenic sulphide reagent for copper recovery in copper and gold hydrometallurgical operations. In: Proceedings of Cu2007, the 6th Copper/Cobre conference, Toronto, August 25–30. 2007.

  6. Klingelhöfer G, Morris RV, Bernhardt B, Schröde C. Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science. 2004;306:1740–5.

    Article  Google Scholar 

  7. Johnson JR, Bell JF, Cloutis E, Staid M, Farrand WH, McCoy T, Rice M, Wang A, Yen A. Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophys Res Lett. 2007;34:L13202.

    Article  Google Scholar 

  8. Vicenzi EP, Fries M, Fahey A, Rost D, Greenwood JP, Steele A. Detailed elemental, mineralogical, and isotopic examination of jarosite in Martian Meteorite MIL 03346. 38th Lunar and planetary science conference, (Lunar and Planetary Science XXXVIII), held 12–16 March 2007 in League City, Texas. LPI Contribution No. 1338, p. 2335.

  9. Lane MD, Bishop JL, Dyar MD, King PL, Parente M, Hyde BC. Mineralogy of the Paso Robles soils on Mars. Am Mineral. 2008;93:728–39.

    Article  CAS  Google Scholar 

  10. Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouélic S. Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science. 2005;307:1587–91.

    Article  CAS  Google Scholar 

  11. Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, The OMEGA Team. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science. 2006;312:400–4.

    Article  CAS  Google Scholar 

  12. Wendt L, Gross C, Kneiss T, Sowe M, Combe JPh, LeDeit L, McGuire PC, Neukum G. Mineralogy and stratigraphy of sulfates and ferric oxides in Ophir Chasma, Mars. 42nd lunar and planetary science conference, 1775. 2011.

  13. Cloutis EA, Hawthorne FC, Mertzman SA, Krenn K, Craig MA, Marcino D, Methot M, Strong J, Mustard JF, Blaney DL, Bell JF III, Vilas F. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus. 2006;184:121–57.

    Article  CAS  Google Scholar 

  14. Lu Y, Wang A. Synthesis and spectral characterization of OH-bearing ferric sulfates. XXXXIII Lunar Planet. Sc. Conf., Abstract 2514, Huston. 2012.

  15. Spratt H, Rintoul L, Avdeev M, Martens W. The thermal decomposition of hydronium jarosite and ammoniojarosite. J Therm Anal Calorim. 2014;115:101–9.

    Article  CAS  Google Scholar 

  16. Palache C, Berman H, Frondel C. The system of mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, Vol 2, 7th edition. Wiley: New York; 1951.

  17. Ngenda RB, Segers L, Kongolo PK. Base metals recovery from zinc hydrometallurgical plant residues by digestion method. Hydrometallurgy Conference 2009. The Southern African Institute of Mining and Metallurgy. Symposium Series 54. 2009. pp. 17–29.

  18. Ruhl AS, Kranzmann A. Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities. Int J Greenh Gas Control. 2012;9:85–90.

    Article  Google Scholar 

  19. Strunz H, Nickel EH. Strunz mineralogical tables. chemical structural mineral classification system 9th edition, 870 S., 226 Abb., Best.-Nr. 13-3509. 2001.

  20. Scordari F, Ventruti G, Gualtieri AF. The structure of metahohmannite, Fe + 32[O(SO4)2]·4H2O, by in situ synchrotron powder diffraction. Am Mineral. 2004;89:265–70.

    Google Scholar 

  21. Scordari F. The crystal structure of hohmannite, Fe2(H2O)4[(SO4)2O]·4H2O and its relationship to amarantite, Fe2(H2O)4[(SO4)2O]·3H2O. Mineral Mag. 1978;42:144–6.

    Article  CAS  Google Scholar 

  22. G. Ventruti G, Della Ventura G, Orlando R, Scordari F. Crystal-structure and vibrational spectroscopy of hohmannite, Fe2[(SO4)2O]·8H2O. 2014 (in press).

  23. Césbron F. Contribution à la Minéralogie des sulfates de ferhydratés. Bull Soc Fr Min Cryst. 1964;87:125–43.

    Google Scholar 

  24. Meneghini C, Artioli G, Balerna A, Gualtieri AF, Norby P, Mobilio S. Multipurpose imaging-plate camera for in situ powder XRD at the GILDA beamline. J Synchrotron Radiat. 2001;8:1162–6.

    Article  CAS  Google Scholar 

  25. Ventruti G, Scordari F, Schingaro E, Gualtieri AF, Meneghini C. The order-disorder character of FeOHSO4 obtained from the thermal decomposition of metahohmannite, Fe +32 [O(SO4)2]·4H2O. Am Mineral. 2005;90:679–86.

    Article  CAS  Google Scholar 

  26. Larson AC, Von Dreele RB. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748. 2000.

  27. Gomez MA, Ventruti G, Celikin M, Assaaoudi H, Putz H, Becze L, Leea KE, Demopoulos GP. The nature of synthetic basic ferric arsenate sulfate [Fe(AsO4)1−x (SO4) x (OH) x ] and basic ferric sulfate (FeOHSO4): their crystallographic, molecular and electronic structure with applications in the environment and energy. RSC Adv. 2013;37:16840–9.

    Article  Google Scholar 

  28. Leoni M, Gualtieri AF, Roveri N. Simultaneous refinement of structure and microstructure of layered materials. J Appl Cryst. 2004;37:166–73.

    Article  CAS  Google Scholar 

  29. Fei Y. Thermal expansion. In: Ahrens TJ, editor. Mineral physics and crystallography: a handbook of physical constants, vol. 2. Washington: American Geophysical Union; 1995. p. 29–44.

    Chapter  Google Scholar 

  30. Della Ventura G, Ventruti G, Bellatreccia F, Scordari F, Cestelli Guidi M. FTIR transmission spectroscopy of sideronatrite, a sodium-iron hydrous sulfate. Mineral Mag. 2013;77:499–507.

    Article  CAS  Google Scholar 

  31. Johansson G. On the crystal structure of FeOHSO4 and InOHSO4. Acta Chem Scand. 1962;16:1234–44.

    Article  CAS  Google Scholar 

  32. Pelovski Y, Petkova V, Nikolov S. Study of the mechanism of the thermochemical decomposition of ferrous sulphate monohydrate. Thermochim Acta. 1996;274:273–80.

    Article  CAS  Google Scholar 

  33. Petkova V, Pelovski Y. Investigation on the thermal properties of Fe2O(SO4)2, part I. J Therm Anal Calorim. 2001;64:1025–35.

    Article  CAS  Google Scholar 

  34. Petkova V, Pelovski Y. Investigation on the thermal properties of Fe2O(SO4)2, part II. J Therm Anal Calorim. 2001;64:1037–44.

    Article  CAS  Google Scholar 

  35. Klug HP, Alexander LE. X-ray diffraction procedures for polycrystalline and amorphous materials. New York: Wiley; 1974.

    Google Scholar 

  36. Ventruti G, Scordari F, Della Ventura G, Bellatreccia F, Gualtieri AF, Lausi A. The thermal stability of sideronatrite and its decomposition products in the system Na2O–Fe2O3–SO2–H2O. Phys Chem Miner. 2013;40:659–70.

    Article  CAS  Google Scholar 

  37. Swamy MSR, Prasad TP. Thermal analysis of iron(II) sulphate heptahydrate in air. V thermal decomposition of hydroxy and oxysulphates. J Therm Anal Calorim. 1981;20:107–14.

    Article  CAS  Google Scholar 

  38. Mahapatra S, Prasad TP, Rao KK, Nayak R. Thermal decomposition of hydrolysis products of Fe(OH)SO4. Thermochim Acta. 1990;161:279–85.

    Article  CAS  Google Scholar 

  39. Schindler A, Blumm, J. Simultaneous thermal analysis of iron hydroxy sulfate. Application note. 2009. http://www.azonano.com/article.aspx?ArticleId=2437.

Download references

Acknowledgements

This work was supported by PRIN 2010–2011 to F. Scordari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ventruti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventruti, G., Della Ventura, G., Scordari, F. et al. In situ high-temperature XRD and FTIR investigation of hohmannite, a water-rich Fe-sulfate, and its decomposition products. J Therm Anal Calorim 119, 1793–1802 (2015). https://doi.org/10.1007/s10973-014-4305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4305-2

Keywords

Navigation