Abstract
Background
Patient education is recommended as an essential component of Enhanced Recovery after Surgery (ERAS) protocols. However, there are many uncertainties regarding content and methodological criteria, which may have a significant impact on the effectiveness of the intervention. The aim of this review is to assess the effect of preoperative patient education on postoperative recovery in abdominal surgery and to examine different patient education strategies for their effectiveness.
Methods
We performed a systematic review according to the PRISMA guidelines. PubMed, CINAHL, and Cochrane were searched from 2011 to 2022. All studies investigating the effect of preoperative patient education on postoperative recovery in abdominal surgery were included. A critical quality assessment of all included studies was performed.
Results
We identified 826 potentially suitable articles via a database search and included 12 studies in this review. The majority of the included studies reported a reduction in the length of hospital stay (LOS) and even a reduction in postoperative complications and adverse events. Patients with preoperative education seemed to have lower psychological stress and experience less anxiety. However, the contents, delivery, and general conditions were implemented differently, making comparison difficult. Moreover, the majority of the included studies were weak in quality.
Conclusion
With this review, we report potential effects, current implementations, and frameworks of patient education. However, the results must be interpreted with caution and are not directly transferable to clinical practice. Further studies in this field are necessary to make concrete recommendations for clinical practice.
Introduction
Disease management programs (DMPs) for patients with chronic conditions have been established in clinical practice. An integral part of these programs is the education of patients regarding health-promoting behaviors and adherence to medical interventions and therapies [1,2,3,4,5]. DMPs positively affect the health-related quality of life, coping status, and self-management skills of patients [2, 4]. In line with DMPs, preoperative patient education is recommended as an essential part of Enhanced Recovery after Surgery (ERAS®) protocols. The objective of ERAS® pathways is to improve and accelerate recovery from surgery through evidence-based treatment [6, 7]. Empowering patients to take an active role in their treatment is highly relevant according to ERAS® concepts. Therefore, patient education is needed to ensure participation from the beginning of treatment.
While the benefits of preoperative patient education have been extensively studied for cardiac and orthopedic surgery, research is needed for abdominal surgery [7,8,9,10]. It seems evident that the content and didactic methods must differ in various surgical fields. Depending on the surgical procedure, multiple consequences ensue in the daily life of the patients and their relatives. Therefore, educational intervention must go beyond simply providing information to actually impacting patients' behavioral levels [11,12,13,14]. It is precisely this criterion that is not fulfilled in many surveys and thus, causes recommendation bias. Accordingly, the level of evidence in the ERAS® guidelines for preoperative patient education is estimated to be "low" with nevertheless a high recommendation rate for clinical practice [10,11,12]. It is unclear which strategies, outcome parameters, contents, and framework are appropriate for preoperative patient education. Ronco and colleagues published a systematic review exploring the strategies and benefits of patient education, across various surgical fields [13]. During the digitalization of the health care system and progressive development of new technologies, it can be assumed that new strategies are being used today to train patients before surgery. Hence, a systematic review is needed to analyze the current state of research regarding abdominal surgery. This systematic review aims to evaluate the impact of preoperative patient education on recovery after abdominal surgery and to examine strategies of patient education for their effectiveness.
Methods
We conducted a systematic review using the preferred reporting elements for systematic reviews and meta-analyses (PRISMA) [14]. First, we applied the PICO (population, intervention, control and outcome) scheme to create an appropriate research question (Table 1). As a result, we primarily assessed two questions:
First, what is the impact of preoperative patient education on recovery in abdominal surgery? Second, which strategies are used to train patients prior to abdominal surgery?
Since there is a vast variety of definitions for patient education, we formulated an appropriate definition for our review. This was necessary to ensure that education is meant as a planned and goal-directed intervention that does not only target increasing patients’ knowledge of specific topics. In the context of this study, we defined patient education as follows:
Patient education is a systematically planned and organized learning experience to achieve voluntary behavioral improvement based on increased knowledge and empowerment of the patients [15,16,17,18].
At least one of the following criteria to fulfill this definition must be met:
-
1.
Educational intervention focuses on health literacy and behavioral or emotional skills
-
2.
Educational intervention is based on a didactic concept or strategy
-
3.
Educational intervention is patient-centered
Research strategy and selection criteria
We searched the PubMed, CINAHL, and Cochrane databases for the period from 2011 to 2022. The entire database search took place in November 2021 and was conducted again in April 2022 to include new publications. The systematic literature research, data collection, and critical quality appraisal were conducted independently by two authors (FB, JW) and supervised by a third author (CPE). In case of disagreements, a re-evaluation was performed, and consensus was reached by consulting further independent authors. No automation tools were used within this review. The research was performed using the following terms: prior surgery OR preoperative; patient education OR patient education as topic [MeSH Terms] OR patient counseling; visceral surgery OR abdominal surgery OR general surgery. Synonyms or relative terms were related to the Boolean operator “OR,” and each set of topics was linked with the Boolean operator "AND." The results were limited to studies in German and English language and research with adult humans. Reference lists from all included trials were searched for further eligible studies (FB, JW). All studies focusing on preoperative counseling and educational concepts for patients were included. Multimodal prehabilitation concepts with an educational focus were also included. The study design was not limited, but comments or expert opinions, as well as unsystematic reviews, were excluded from this research. The setting was elective surgery in the field of abdominal surgery. Studies addressing ERAS implementation strategies or feasibility, educational programs for parents with children undergoing surgery, educational concepts for ambulatory surgery, and risk prediction tools were excluded. Systematic reviews and meta-analyses were included if at least one of their examined studies dealt with abdominal surgery.
Data collection and critical appraisal
At the beginning of the study selection, we screened all titles of the studies for eligibility. If inclusion or exclusion criteria were disputed, the study was initially included. After exclusion of duplicates, the same procedure was performed with the remaining abstracts, followed by full-text screening. For data collection, we used standardized data extraction forms created with SRDR + (FB). A pilot test was performed (JW). Data extraction focused on the setting, delivery, timing, content, method, material, and outcome of the patient education. We were open to various outcome parameters, but the established criteria were measurement within the postoperative period and patient-centered outcomes for recovery. This means that studies exploring cost-effectiveness or only satisfaction were excluded. A critical quality appraisal of the studies was performed using RoB 2 [19], AMSTAR 2 [20], or ROBINS-I [21], depending on the study design (FB, JW).
Results
Study characteristics
The systematic search yielded 826 literature results (Fig. 1). Seven hundred and nineteen articles were excluded because the titles of the articles were not suitable for this research. Twenty-two duplicates were removed. Accordingly, we reviewed 85 abstracts for their suitability and excluded 56 publications. We screened 29 full-text and performed a critical appraisal. Twelve Studies were included in this review (Table 2). The quality of six included studies was estimated as low (FB, JW) [13, 24, 25, 29, 31, 32]. Three studies were rated as medium quality [23, 26, 30] and three as high [22, 27, 28]. The details on risk of bias assessment and quality appraisal of the included studies are found in Table 3. Table 4 shows detailed reasons for excluding studies after full-text screening [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. The reason for exclusion was a lack of focus on education in most studies. Within the included studies were four randomized controlled trials [22,23,24,25], and four systematic reviews, of which two included a meta-analysis [13, 26,27,28], and four were Non-Randomized Studies of Intervention (NRSIs) [29,30,31,32]. Freeman et al. (2018) provided a reanalysis of a recent meta-analysis [27, 28]. Both reviews were included. The included studies came from a wide variety of countries: three from the United Kingdom, two from Turkey, and one each from Australia, China, Germany, Italy, Korea, Spain, and USA. The studies in different surgical fields ranged from minimally invasive cholecystectomies to bariatric and colorectal surgery and extended major abdominal surgery [24,25,26, 29, 30].
Outcomes
Within the clinical trials in this review, a total of n = 1.554 patients were included, of whom n = 732 were in the intervention groups and n = 822 were in the control groups. The four systematic reviews included a total of n = 14.677 patients. Length of hospital stay (LOS) and postoperative morbidity were the most reported outcome parameters in the studies [13, 22, 23, 25,26,27,28, 30]. Most studies reported a significant reduction in LOS within the intervention groups [22, 23, 27, 28, 30]. Only one study did not show a difference in length of stay [25]. Eight studies reported postoperative morbidity and adverse events [13, 22, 23, 25, 26, 29,30,31]. Barberan-Garcia et al. showed significantly lower complication rates in the intervention group but no differences in the severity of complications [22]. Klaiber et al. reported significantly lower in-hospital falls in their education group [25]. Cavallaro et al. had fewer surgical site infections in the education group, but the difference was not statistically significant [30]. Hong et al. reported fewer adverse events (dizziness) during the use of patient-controlled analgesia (PCA) within the educational group [31].
Psychological status was commonly reported [13, 22,23,24,25,26,27,28, 32]. Three studies underlined a reduction in anxiety with patient education. [23, 24, 32]. Two systematic reviews stressed a reduced negative affect with psychological preparation, with procedural information appearing to be most effective [27, 28]. However, two further studies did not show a difference between their groups in terms of anxiety [22, 25]. Postoperative pain was reported in six included studies with conflicting results [23, 25,26,27,28, 31]. Freeman et al. and Powell et al. demonstrated a significant improvement in postoperative pain, not only with the teaching of relaxation techniques but also with the combination of behavioral instruction and sensory information [27, 28]. Hong et al. reported significantly lower pain in their education group [31]. Two studies did not find statistically relevant differences in this area [25, 26]. Peng et al. detected even higher postoperative pain levels in their intervention group [23]. The Impact on quality of life (QoL) was examined in three studies [13, 22, 25]. None of the studies reported differences in QoL within intervention or control groups.
Contents
The content of patient education varied widely from very general in some studies to very specific to the particular procedure in others. All studies addressed preparation for surgery, but with different approaches. Recommendations and guidance on preoperative physical activity or postoperative mobilization were the most frequently mentioned patient education content [22, 29, 30, 32]. Instructions and advice on respiratory therapy were also frequently mentioned as comprising the content of preoperative patient education [25, 32]. This frequency was followed by that of nutritional counseling [22, 29, 30] and psychological preparation (motivation, stress reduction) [25, 27,28,29]. In three of the included studies, pain management was also a criterion of content within the education [13, 25, 31]. Adherence to medical therapies or interventions, for example, the intake of medication, was also part of two studies [30, 31]. Patients were informed about structural processes in the hospital [13, 32] and postoperative complications [13, 25]. Regarding colonic surgery, stoma care was addressed in two of the included studies [13, 24]. Most of the education took place in individual sessions, and only Klaiber et al. conducted group settings [25]. In the majority of studies, the education was delivered face to face [22, 24, 25, 31, 32]. Some studies provided education via websites, e-training or videos [23, 29, 31, 32]. Written pamphlets were additionally provided in four studies [24, 25, 30, 31]. In one study, patients were trained via phone call [30]. In most cases, preoperative patient education was provided by nurses [24, 25, 30, 32]. In one study, patient education was provided by an anesthesiologist, and in another study, education was provided by a physiotherapist [22]. The timing of education varied widely across the included studies, that is from earlier than 4 weeks before surgery [22, 29] to one day before surgery [24, 25, 31].
Discussion
Abdominal surgery is associated with high morbidity and mortality [22]. Measures such as patient education are needed to improve recovery after surgery.
In this systematic review, we assessed the effects of patient education on postoperative recovery in abdominal surgery. In many areas, preoperative patient education seems to positively impact the postoperative course, especially length of stay, postoperative adverse events, and psychological status [22,23,24,25, 27, 28, 30, 31]. The outcome criteria investigated differed significantly among the studies examined. Transparent cause–effect relationships cannot be established for patient education since a wide range of effects can be expected. Measuring these factors require more research at the emotional, behavioral, cognitive, and participatory levels.
High heterogeneity in the delivery and setting of preoperative patient education across the intervention groups was evident. Moreover, the timeframes varied from days to several weeks before surgery. The timing of education may be crucial for patients to develop coping strategies and take an active role in the treatment process for the patient, but this aspect was not critically questioned in any study. None of the included studies defined preoperative patient education or which criteria must be met. Furthermore, the setting and strategy of patient education were poorly described. We hardly found written educational concepts or strategies; at best, lists with educational contents were presented. Only two studies reported that the education followed a manual or written protocol [24, 30]. To enable quality criteria and comparability, it is advisable to define a didactic concept or strategy to facilitate sustainability and verifiability of the outcomes. In particular, conversation techniques or conversation styles, as well as didactic methods, were rarely described. Only one study described the interview style consisting of Motivational Interviewing (MI) [22]. No qualitative studies of preoperative patient education in abdominal surgery examined patient needs or experiences. Studies in this area are needed to ensure patient-centeredness and need-based education.
The treatment of the control groups was poorly described in most studies. Thus, patients in the control group were often reported as receiving a “standard treatment” without specifying what this included. Since "standard care" already varies from setting to setting, it is impossible to derive comparability without a detailed description of such treatment.
We estimated the overall quality in most included studies as ranging from low to medium. In various studies, we noticed a high risk of selection bias and a nontransparent study process [24, 25, 29, 30]. Due to the nature of the intervention, blinding of the patients was impossible, but the treatment providers were often not blinded. Performance bias may have occurred in the studies examined due to more intensive care in the educational populations. This means that positive effects may have been due to the more intensive care and not to the education. This consideration is not reflected in any of the studies.
To our knowledge, this is the first systematic review of patient education with a specific emphasis on abdominal surgery. We showed potential effects, current implementations, and frameworks of patient education in this systematic review. It is important to note that patient education is rarely an isolated intervention but rather part of a multimodal treatment with various concomitant interventions that may also affect the outcome. This leads to the fact that the educational interventions in the studies are hardly comparable. All but one study showed a reduced length of stay with integrated patient education, and some even showed a reduction in postoperative complications and anxiety. However, these results must be interpreted cautiously and are not directly transferable to clinical practice.
Nevertheless, patient education seems to have positive rather than negative effects on patients. None of the studies described adverse events due to patient education, except for higher pain in one study [23]. Thus, it can be assumed that patient education does not cause harm, provides the basis for communication at eye level, and encourages the patient to act in a participatory manner. Further studies in the field of patient education are necessary to be able to make concrete recommendations for clinical practice and, at the same time, to establish only meaningful measures in everyday clinical practice.
References
Anderson L, Brown JP, Clark AM et al (2017) Patient education in the management of coronary heart disease. Cochrane Database Syst Rev 6:CD0088954
Bennett S, Pigott A, Beller EM et al (2016) Educational interventions for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev 11:CD008144
Duke SA, Colagiuri S, Colagiuri R (2009) Individual patient education for people with type 2 diabetes mellitus. Cochrane Database Syst Rev:CD005268
Lenferink A, Brusse-Keizer M, van der Valk PD et al (2017) Self-management interventions including action plans for exacerbations versus usual care in patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 8:CD011682
Riemsma RP, Kirwan JR, Taal E et al (2003) Patient education for adults with rheumatoid arthritis. Cochrane Database Syst Rev:CD003688
Fearon KC, Ljungqvist O, Von Meyenfeldt M et al (2005) Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr 24:466–477
Ljungqvist O, Francis NK, Urman RD (2020) Enhanced recovery after surgery: a complete guide to optimizing outcomes. Springer
Ramesh C, Nayak BS, Pai VB et al (2017) Effect of preoperative education on postoperative outcomes among patients undergoing cardiac surgery: a systematic review and meta-analysis. J Perianesth Nurs 32:518-529.e512
Moyer R, Ikert K, Long K et al (2017) The value of preoperative exercise and education for patients undergoing total hip and knee arthroplasty: a systematic review and meta-analysis. JBJS Rev 5:e2
Melloul E, Lassen K, Roulin D et al (2020) Guidelines for perioperative care for pancreatoduodenectomy: enhanced recovery after surgery (ERAS) recommendations 2019. World J Surg 44:2056–2084
Melloul E, Hübner M, Scott M et al (2016) Guidelines for perioperative care for liver surgery: enhanced recovery after surgery (ERAS) society recommendations. World J Surg 40:2425–2440
Gustafsson UO, Scott MJ, Hubner M et al (2019) Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS®) society recommendations: 2018. World J Surg 43:659–695
Ronco M, Iona L, Fabbro C et al (2012) Patient education outcomes in surgery: a systematic review from 2004 to 2010. Int J Evid Based Healthc 10:309–323
Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535
Jotterand F, Amodio A, Elger BS (2016) Patient education as empowerment and self-rebiasing. Med Health Care Philos 19:553–561
Green LW, Kreuter MW (1991) Health education planning Mayfield Pub. Co.
WHO Therapeutic patient education (1998) Continuing education programmes for health care providers in the field of prevention of chronic diseases: report of a WHO working group. WHO Regional Office for Europe, Copenhagen
Simonds S (1976) Health education in the Mid-1970s: State of the Art. Preventive Medecine
Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898
Shea BJ, Reeves BC, Wells G et al (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008
Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919
Barberan-Garcia A, Ubré M, Roca J et al (2018) Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery: a randomized blinded controlled trial. Ann Surg 267:50–56
Peng F, Peng T, Yang Q et al (2020) Preoperative communication with anesthetists via anesthesia service platform (ASP) helps alleviate patients’ preoperative anxiety. Sci Rep 10:18708
Çakır SK, Özbayır T (2018) Assessment of patient anxiety levels before and after stoma surgery. Turk J Colorectal Dis 28:159–163
Klaiber U, Stephan-Paulsen LM, Bruckner T et al (2018) Impact of preoperative patient education on the prevention of postoperative complications after major visceral surgery: the cluster randomized controlled PEDUCAT trial. Trials 19:288
Gurusamy KS, Vaughan J, Davidson BR (2014) Formal education of patients about to undergo laparoscopic cholecystectomy. Cochrane Database of Systematic Reviews
Freeman SC, Scott NW, Powell R et al (2018) Component network meta-analysis identifies the most effective components of psychological preparation for adults undergoing surgery under general anesthesia. J Clin Epidemiol 98:105–116
Powell R, Scott NW, Manyande A et al (2016) Psychological preparation and postoperative outcomes for adults undergoing surgery under general anaesthesia. Cochrane Database Syst Rev:Cd008646
Brown WA, Burton PR, Shaw K et al (2016) A pre-hospital patient education program improves outcomes of bariatric surgery. Obes Surg 26:2074–2081
Cavallaro PM, Milch H, Savitt L et al (2018) Addition of a scripted pre-operative patient education module to an existing ERAS pathway further reduces length of stay. Am J Surg 216:652–657
Hong S-J, Lee E (2012) Effects of a structured educational programme on patient-controlled analgesia (PCA) for gynaecological patients in South Korea. J Clin Nurs John Wiley Sons Inc 21:3546–3555
Soydaş Yeşilyurt D, Yildiz Findik Ü (2019) Effect of preoperative video information on anxiety and satisfaction in patients undergoing abdominal surgery. CIN: computers. Inform Nurs 37:430–436
Cavalheri V, Granger C (2017) Preoperative exercise training for patients with non‐small cell lung cancer. Cochrane Database Syst Rev
Elhage SA, Thielen ON, Huber AT et al (2021) Preoperative patient opioid education, standardization of prescriptions, and their impact on overall patient satisfaction. Surgery 169:655–659
Fenton C, Tan AR, Abaraogu UO et al (2021) Prehabilitation exercise therapy before elective abdominal aortic aneurysm repair. Cochrane Database Syst Rev
Forsmo H, Pfeffer F, Rasdal A et al (2016) Compliance with enhanced recovery after surgery criteria and preoperative and postoperative counselling reduces length of hospital stay in colorectal surgery: results of a randomized controlled trial. Colorectal Dis 18:603–611
García-Delgado Y, López-Madrazo-Hernández MJ, Alvarado-Martel D et al (2021) Prehabilitation for bariatric surgery: a randomized, controlled trial protocol and pilot study. Nutrients 13:2903
Howard R, Yin YS, McCandless L et al (2019) Taking control of your surgery: impact of a prehabilitation program on major abdominal surgery. J Am Coll Surg 228:72–80
Huber J, Ihrig A, Yass M et al (2013) Multimedia support for improving preoperative patient education: a randomized controlled trial using the example of radical prostatectomy. Ann Surg Oncol 20:15–23
Lin SY, Huang HA, Lin SC, Huang YT, Wang KY, Shi HY (2016) The effect of an anaesthetic patient information video on perioperative anxiety: a randomised study. Eur J Anaesthesiol 33(2):134–139
Loughney LA, West MA, Kemp GJ et al (2018) Exercise interventions for people undergoing multimodal cancer treatment that includes surgery. Cochrane Database Syst Rev
Pandrangi VC, Gaston B, Appelbaum NP et al (2019) The application of virtual reality in patient education. Ann Vasc Surg 59:184–189
Priya P, Roach EJ (2013) Effect of pre-operative instruction on anxiety among women undergoing abdominal hysterectomy. Nurs J India 104:245
Sheaffer W, Day R, Harold K et al (2018) Decreasing length of stay in bariatric surgery: the power of suggestion. Am J Surg 215:452–455
García-Botello S, de Lucas RC, Tornero C et al (2011) Implementation of a perioperative multimodal rehabilitation protocol in elective colorectal surgery. A prospective randomised controlled study. Cirugía Española English Edition 89:159–166
Teishima J, Takayama Y, Iwaguro S et al (2018) Usefulness of personalized three-dimensional printed model on the satisfaction of preoperative education for patients undergoing robot-assisted partial nephrectomy and their families. Int Urol Nephrol 50:1061–1066
Wall B, Wormald R, Lindsay A et al (2020) Strength training enhances recovery after surgery (STERAS). Med Sci Sports Exerc 52:1012–1012
West AM, Bittner EA, Ortiz VE (2014) The effects of preoperative, video-assisted anesthesia education in Spanish on Spanish-speaking patients’ anxiety, knowledge, and satisfaction: a pilot study. J Clin Anesth 26:325–329
Zhang X-D, Zhao Q-Y, Fang Y et al (2013) Perioperative comprehensive supportive care interventions for Chinese patients with esophageal carcinoma: a prospective study. Asian Pac J Cancer Prev 14:7359–7366
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Freya Brodersen received speaking fee from Medtronic. The other authors report no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Brodersen, F., Wagner, J., Uzunoglu, F.G. et al. Impact of Preoperative Patient Education on Postoperative Recovery in Abdominal Surgery: A Systematic Review. World J Surg 47, 937–947 (2023). https://doi.org/10.1007/s00268-022-06884-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00268-022-06884-4