Skip to main content

Advertisement

Log in

Microwave Thermoablation of Colorectal Liver Metastases Close to Large Hepatic Vessels Under Pringle Maneuver Minimizes the “Heat Sink Effect”

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Liver resection and thermoablation are the mainstay of the surgical management of colorectal liver metastases (CRLM). The main limitation of thermoablation is the “heat-sink” effect for nodules next to large vessels. Herein, we report the preliminary results of microwave ablation (MWA) with associated Pringle maneuver to overcome this flaw.

Methods

From November 2017, we performed intraoperative MWA with Pringle maneuver for nodules ≤3 cm with immediate proximity to large vessels (distance ≤ 5 mm, diameter ≥ 3 mm). We collected characteristics of nodules, surgical procedures and postoperative morbidity. Diameter of the ablation area, especially the ablative minimal margin, was calculated for each nodule. Recurrence was also evaluated.

Results

Nineteen patients underwent MWA with Pringle maneuver for 23 nodules. Nineteen (83%) ablated nodules were located in segments VI, VII and VIII, and one nodule was in segment I. Median size of nodules was 15 mm (10–21). No deaths occurred. Six patients (38%) experienced complications, among them only one was subsequent to the thermal ablation. Ablative minimal margin was ≥5 mm for 19 (83%) nodules. Margin was not sufficient for four nodules, among them only 2/23 cases (8.7%) of in situ recurrence occurred after 12 months of median follow-up.

Conclusions

In this preliminary study, MWA with Pringle maneuver was associated with a low related morbidity rate and favorable oncological outcome, especially when the radiological minimal margin was sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pan-Asian Adapted ESMO Consensus Guidelines for the Management of Patients with Metastatic Colorectal Cancer| ESMO. https://www.esmo.org/Guidelines/Gastrointestinal-Cancers/Pan-Asian-Adapted-ESMO-Consensus-Guidelines-for-the-Management-of-Patients-with-Metastatic-Colorectal-Cancer. Accessed 18 Aug 2019

  2. ESMO Consensus Guidelines for the Management of Patients with Metastatic Colorectal Cancer|ESMO. https://www.esmo.org/Guidelines/Gastrointestinal-Cancers/Management-of-Patients-with-Metastatic-Colorectal-Cancer. Accessed 18 Aug 2019

  3. Minami Y, Kudo M (2013) Radiofrequency ablation of liver metastases from colorectal cancer: a literature review. Gut Liver 7:1–6. https://doi.org/10.5009/gnl.2013.7.1.1

    Article  CAS  PubMed  Google Scholar 

  4. Vogl TJ, Nour-Eldin N-EA, Hammerstingl RM et al (2017) Microwave ablation (MWA): basics, Technique and results in primary and metastatic liver neoplasms—review article. Rofo 189:1055–1066. https://doi.org/10.1055/s-0043-117410

    Article  PubMed  Google Scholar 

  5. Goldberg SN, Hahn PF, Tanabe KK et al (1998) Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol 9:101–111

    Article  CAS  Google Scholar 

  6. Ruiter SJS, Heerink WJ, de Jong KP (2019) Liver microwave ablation: a systematic review of various FDA-approved systems. Eur Radiol 29:4026–4035. https://doi.org/10.1007/s00330-018-5842-z

    Article  PubMed  Google Scholar 

  7. Pillai K, Akhter J, Chua TC et al (2015) Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine (Baltimore) 94:e580. https://doi.org/10.1097/MD.0000000000000580

    Article  Google Scholar 

  8. Chetboun M, Kianmanesh R, Sommacale D et al (2016) Complete necrosis after microwave thermosphere ablation of liver metastases from colorectal cancer, histological proof of efficacy. J Surg Oncol 113:843–844. https://doi.org/10.1002/jso.24219

    Article  PubMed  Google Scholar 

  9. Piardi T, Lhuaire M, Memeo R et al (2016) Laparoscopic pringle maneuver: how we do it? Hepatobiliary Surg Nutr 5:345–349. https://doi.org/10.21037/hbsn.2015.11.01

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang X, Sofocleous CT, Erinjeri JP et al (2013) Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol 36:166–175. https://doi.org/10.1007/s00270-012-0377-1

    Article  CAS  PubMed  Google Scholar 

  11. Heerink WJ, Solouki AM, Vliegenthart R et al (2018) The relationship between applied energy and ablation zone volume in patients with hepatocellular carcinoma and colorectal liver metastasis. Eur Radiol 28:3228–3236. https://doi.org/10.1007/s00330-017-5266-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Regimbeau JM, Cosse C, Kaiser G et al (2017) Feasibility, safety and efficacy of two-stage hepatectomy for bilobar liver metastases of colorectal cancer: a LiverMetSurvey analysis. HPB (Oxford) 19:396–405. https://doi.org/10.1016/j.hpb.2017.01.008

    Article  Google Scholar 

  13. Donadon M, Cescon M, Cucchetti A et al (2018) Parenchymal-sparing surgery for the surgical treatment of multiple colorectal liver metastases is a safer approach than major hepatectomy not impairing patients’ prognosis: a bi-institutional propensity score-matched analysis. Dig Surg 35:342–349. https://doi.org/10.1159/000479336

    Article  PubMed  Google Scholar 

  14. Alvarez FA, Sanchez Claria R, Oggero S, de Santibañes E (2016) Parenchymal-sparing liver surgery in patients with colorectal carcinoma liver metastases. World J Gastrointest Surg 8:407–423. https://doi.org/10.4240/wjgs.v8.i6.407

    Article  PubMed  PubMed Central  Google Scholar 

  15. Memeo R, de Blasi V, Adam R et al (2016) Parenchymal-sparing hepatectomies (PSH) for bilobar colorectal liver metastases are associated with a lower morbidity and similar oncological results: a propensity score matching analysis. HPB 18:781–790. https://doi.org/10.1016/j.hpb.2016.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gillams A, Goldberg N, Ahmed M et al (2015) Thermal ablation of colorectal liver metastases: a position paper by an international panel of ablation experts, The Interventional Oncology Sans Frontières meeting 2013. Eur Radiol 25:3438–3454. https://doi.org/10.1007/s00330-015-3779-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chow FC-L, Chok KS-H (2019) Colorectal liver metastases: an update on multidisciplinary approach. World J Hepatol 11:150–172. https://doi.org/10.4254/wjh.v11.i2.150

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shady W, Petre EN, Do KG et al (2018) Percutaneous microwave versus radiofrequency ablation of colorectal liver metastases: ablation with clear margins (A0) provides the best local tumor control. J Vasc Interv Radiol 29:268–275.e1. https://doi.org/10.1016/j.jvir.2017.08.021

    Article  PubMed  Google Scholar 

  19. De Cobelli F, Marra P, Ratti F et al (2017) Microwave ablation of liver malignancies: comparison of effects and early outcomes of percutaneous and intraoperative approaches with different liver conditions : new advances in interventional oncology: state of the art. Med Oncol 34:49. https://doi.org/10.1007/s12032-017-0903-8

    Article  PubMed  Google Scholar 

  20. Barabino M, Gatti A, Santambrogio R et al (2017) Intraoperative local ablative therapies combined with surgery for the treatment of bilobar colorectal liver metastases. Anticancer Res 37:2743–2750

    Article  Google Scholar 

  21. Chiappa A, Bertani E, Zbar AP et al (2016) Optimizing treatment of hepatic metastases from colorectal cancer: resection or resection plus ablation? Int J Oncol 48:1280–1289. https://doi.org/10.3892/ijo.2016.3324

    Article  CAS  PubMed  Google Scholar 

  22. Lu DSK, Raman SS, Limanond P et al (2003) Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol 14:1267–1274

    Article  Google Scholar 

  23. Ringe KI, Lutat C, Rieder C et al (2015) Experimental evaluation of the heat sink effect in hepatic microwave ablation. PLoS ONE 10:e0134301. https://doi.org/10.1371/journal.pone.0134301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu NC, Raman SS, Kim YJ et al (2008) Microwave liver ablation: influence of hepatic vein size on heat-sink effect in a porcine model. J Vasc Interv Radiol 19:1087–1092. https://doi.org/10.1016/j.jvir.2008.03.023

    Article  PubMed  Google Scholar 

  25. Kim C (2018) Understanding the nuances of microwave ablation for more accurate post-treatment assessment. Future Oncol 14:1755–1764. https://doi.org/10.2217/fon-2017-0736

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi H, Kahramangil B, Kose E, Berber E (2018) A comparison of microwave thermosphere versus radiofrequency thermal ablation in the treatment of colorectal liver metastases. HPB (Oxford) 20:1157–1162. https://doi.org/10.1016/j.hpb.2018.05.012

    Article  Google Scholar 

  27. Zaidi N, Okoh A, Yigitbas H et al (2016) Laparoscopic microwave thermosphere ablation of malignant liver tumors: an analysis of 53 cases. J Surg Oncol 113:130–134. https://doi.org/10.1002/jso.24127

    Article  PubMed  Google Scholar 

  28. Frich L, Mala T, Gladhaug IP (2006) Hepatic radiofrequency ablation using perfusion electrodes in a pig model: effect of the Pringle manoeuvre. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 32:527–532. https://doi.org/10.1016/j.ejso.2006.02.021

    Article  CAS  Google Scholar 

  29. Shen P, Fleming S, Westcott C, Challa V (2003) Laparoscopic radiofrequency ablation of the liver in proximity to major vasculature: effect of the Pringle maneuver. J Surg Oncol 83:36–41. https://doi.org/10.1002/jso.10235

    Article  PubMed  Google Scholar 

  30. Smyrniotis V, Kostopanagiotou G, Theodoraki K et al (2004) The role of central venous pressure and type of vascular control in blood loss during major liver resections. Am J Surg 187:398–402. https://doi.org/10.1016/j.amjsurg.2003.12.001

    Article  PubMed  Google Scholar 

  31. de Baere T, Deschamps F, Briggs P et al (2008) Hepatic malignancies: percutaneous radiofrequency ablation during percutaneous portal or hepatic vein occlusion. Radiology 248:1056–1066. https://doi.org/10.1148/radiol.2483070222

    Article  PubMed  Google Scholar 

  32. Jungraithmayr W, Szarzynski M, Neeff H et al (2004) Significance of total vascular exclusion for hepatic cryotherapy: an experimental study. J Surg Res 116:32–41. https://doi.org/10.1016/s0022-4804(03)00054-4

    Article  CAS  PubMed  Google Scholar 

  33. Metcalfe MS, Mullin EJ, Texler M et al (2007) The safety and efficacy of radiofrequency and electrolytic ablation created adjacent to large hepatic veins in a porcine model. Eur J Surg Oncol 33:662–667. https://doi.org/10.1016/j.ejso.2007.02.011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rhaiem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhaiem, R., Kianmanesh, R., Minon, M. et al. Microwave Thermoablation of Colorectal Liver Metastases Close to Large Hepatic Vessels Under Pringle Maneuver Minimizes the “Heat Sink Effect”. World J Surg 44, 1595–1603 (2020). https://doi.org/10.1007/s00268-020-05379-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-020-05379-4

Navigation