World Journal of Surgery

, Volume 32, Issue 2, pp 305–309 | Cite as

Artificial Neural Networks: Useful Aid in Diagnosing Acute Appendicitis

  • S. G. Prabhudesai
  • S. Gould
  • S. Rekhraj
  • P. P. Tekkis
  • G. Glazer
  • P. Ziprin



The purpose of the study was to assess the role of artificial neural networks (ANNs) in the diagnosis of appendicitis in patients presenting with acute right iliac fossa (RIF) pain and comparing its performance with the assessment made by experienced clinicians and the Alvarado score.


After training and testing an ANN, data from 60 patients presenting with suspected appendicitis over a 6-month period to a teaching hospital was collected prospectively. Accuracy of diagnosing appendicitis by the clinician, the Alvarado score, and the ANN was compared.


The sensitivity, specificity, and positive and negative predictive values of the ANN were 100%, 97.2%, 96.0%, and 100% respectively. The ability of the ANN to exclude accurately the diagnosis of appendicitis in patients without true appendicitis was statistically significant compared to the clinical performance (p = 0.031) and Alvarado score of ≥6 (p = 0.004) and nearly significant compared to the Alvarado score of ≥7 (p = 0.063).


ANNs can be an effective tool for accurately diagnosing appendicitis and may reduce unnecessary appendectomies.


Artificial Neural Network Appendicitis Acute Appendicitis Diagnostic Laparoscopy Suspected Appendicitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Colson M, Skinner KA, Dunnington G (1997) High negative appendectomy rates are no longer acceptable. Am J Surg 174:723–726PubMedCrossRefGoogle Scholar
  2. 2.
    Andersson RE, Hugander AP, Ghazi SH, et al (1999) Diagnostic value of disease history, clinical presentation, and inflammatory parameters of appendicitis. World J Surg 23:133–140PubMedCrossRefGoogle Scholar
  3. 3.
    Jahn H, Mathiesen FK, Neckelmann K, et al (1997) Comparison of clinical judgment and diagnostic ultrasonography in the diagnosis of acute appendicitis: experience with a score-aided diagnosis. Eur J Surg 163: 433–443PubMedGoogle Scholar
  4. 4.
    Hale DA, Molloy M, Pearl RH, et al (1997) Appendectomy: a contemporary appraisal. Ann Surg 225:252–261PubMedCrossRefGoogle Scholar
  5. 5.
    Leape LL, Ramenofsky ML (1980) Laparoscopy for questionable appendicitis: can it reduce the negative appendectomy rate? Ann Surg 191:410–143PubMedCrossRefGoogle Scholar
  6. 6.
    Deutsch AA, Zelikovsky A, Reiss R (1982) Laparoscopy in the prevention of unnecessary appendicectomies: a prospective study. Br J Surg 69:336–337PubMedCrossRefGoogle Scholar
  7. 7.
    Alvarado A (1986) A practical score for the early diagnosis of acute appendicitis. Ann Emerg Med 15:557–564PubMedCrossRefGoogle Scholar
  8. 8.
    Fenyö G, Lindberg G, Blind P, et al (1997) Diagnostic decision support in suspected acute appendicitis: validation of a simplified scoring system. Eur J Surg 163:831–838PubMedGoogle Scholar
  9. 9.
    de Dombal FT, Leaper DJ, Staniland JR, et al (1972) Computer-aided diagnosis of acute abdominal pain. Br J Surg 2:9–13Google Scholar
  10. 10.
    Birnbaum BA, Jeffrey RB Jr (1998) CT and sonographic evaluation of acute right lower quadrant abdominal pain. AJR Am J Roentgenol 170:361–371PubMedGoogle Scholar
  11. 11.
    Jeffrey RB Jr, Laing FC, Townsend RR (1988) Acute appendicitis: sonographic criteria based on 250 cases. Radiology 167:327–329PubMedGoogle Scholar
  12. 12.
    Rioux M (1992) Sonographic detection of the normal and abnormal appendix. AJR Am J Roentgenol 158:773–778PubMedGoogle Scholar
  13. 13.
    Rao PM, Rhea JT, Novelline RA, et al (1998) Effect of computed tomography of the appendix on treatment of patients and use of hospital resources. N Engl J Med 338:141–146PubMedCrossRefGoogle Scholar
  14. 14.
    Baxt WG (1991) Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med 115:843–848PubMedGoogle Scholar
  15. 15.
    Patil S, Henry JW, Rubenfire M, et al (1993) Neural network in the clinical diagnosis of acute pulmonary embolism. Chest 104:1685–1689PubMedCrossRefGoogle Scholar
  16. 16.
    Burke HB (1994) Artificial neural networks for cancer research: outcome prediction. Semin Surg Oncol 10:73–79PubMedCrossRefGoogle Scholar
  17. 17.
    Doyle HR, Dvorchik I, Mitchell S, et al (1994) Predicting outcomes after liver transplantation: a connectionist approach. Ann Surg 2:504–508Google Scholar
  18. 18.
    Hinton GE (1992) How neural networks learn from experience. Sci Am 267:144–151PubMedCrossRefGoogle Scholar
  19. 19.
    Eberhart RC, Dobbins RW, Hutton LV (1991) Neural network paradigm comparisons for appendicitis diagnoses. In: Proceedings of 4th Annual IEEE Symposium on Computer-Based Systems, pp 298–304Google Scholar
  20. 20.
    Dixon JM, Elton RA, Rainey JB, et al (1991) Rectal examination in patients with pain in the right lower quadrant of the abdomen. BMJ 302:386–388PubMedCrossRefGoogle Scholar
  21. 21.
    Andersson RE, Hugander AP, Ghazi SH, et al (1999) Diagnostic value of disease history, clinical presentation, and inflammatory parameters of appendicitis. World J Surg 23:133–140PubMedCrossRefGoogle Scholar
  22. 22.
    Kalan M, Talbot D (1994) Evaluation of modified Alvarado score in the diagnoses of acute appendicitis. Ann R Coll Surg Engl 76:418–19PubMedGoogle Scholar
  23. 23.
    Owen TD, Williams H, Stiff G, et al (1992) Evaluation of Alvarado score in acute appendicitis. J R Soc Med 85:87–88PubMedGoogle Scholar
  24. 24.
    John H, Neff U, Kelemen M (1993) Appendicitis diagnosis today: clinical and ultrasound deductions. World J Surg 17:243–249PubMedCrossRefGoogle Scholar
  25. 25.
    Pesonen E, Ohmann C, Eskelinen M, et al (1998) Diagnosis of acute appendicitis in two databases: evaluation of different neighbourhoods with an LVQ neural network. Methods Inf Med 37:59–63PubMedGoogle Scholar
  26. 26.
    Sheridan WG, White AT, Havard T, et al (1992) Nonspecific abdominal pain: the resource implications. Ann R Coll Surg Engl 74:181–185PubMedGoogle Scholar
  27. 27.
    Paterson-Brown S (1993) Emergency laparoscopy surgery. Br J Surg 80:279–283PubMedCrossRefGoogle Scholar
  28. 28.
    Denizbasi A, Unleur EE (2003) The role of the emergency medicine resident using the Alvarado score in the diagnosis of acute appendicitis compared with the general surgery resident. Eur J Emerg Med 10:296–301PubMedCrossRefGoogle Scholar
  29. 29.
    Chan MY, Teo BS, Ng BL (2001) The Alvarado score and acute appendicitis. Ann Acad Med Singapore 30:510–512PubMedGoogle Scholar
  30. 30.
    Hale DA, Molloy M, Pearl RH, et al (1997) Appendectomy: a contemporary appraisal. Ann Surg 225:252–261PubMedCrossRefGoogle Scholar
  31. 31.
    Jones PF (2001) Suspected acute appendicitis: trends in management over 30 years. Br J Surg 88:1570–1577PubMedCrossRefGoogle Scholar
  32. 32.
    McGreevy JM, Finlayson SR, Alvarado R, et al (2002) Laparoscopy may be lowering the threshold to operate on patients with suspected appendicitis. Surg Endosc 16:1046–1049PubMedCrossRefGoogle Scholar
  33. 33.
    Gammerman A, Thatcher AR (1991) Bayesian diagnostic probabilities without assuming independence of symptoms. Methods Inf Med 30:15–22PubMedGoogle Scholar
  34. 34.
    Cross SS, Harrison RF, Kennedy RL (1995) Introduction to neural networks. Lancet 346:1135–138lCrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2007

Authors and Affiliations

  • S. G. Prabhudesai
    • 1
  • S. Gould
    • 1
  • S. Rekhraj
    • 1
  • P. P. Tekkis
    • 1
  • G. Glazer
    • 2
  • P. Ziprin
    • 1
  1. 1.Department of Biosurgery and Surgical Technology, Faculty of Medicine, Imperial College LondonSt. Mary’s Hospital CampusLondonUK
  2. 2.General Surgical UnitSt. Mary’s HospitalLondonUK

Personalised recommendations