Advertisement

Environmental Management

, Volume 57, Issue 4, pp 879–893 | Cite as

Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China

  • Yuxue Pan
  • Haitao LiEmail author
Article

Abstract

The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)–Nb–Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618—1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.

Keywords

Heavy metal pollution Potential ecological risk Rare earth mine Brownfield management 

Notes

Acknowledgments

This work was sponsored by the Key Project of the Knowledge Innovation Program of IGSNRR (2012ZD002). We are grateful to Guiyue Chen and Jingwei Du for their sampling and analytical work at the early stages of the project. We also want to thank Drs. Ranjeet John, Chaoyang Wei, Lingqing Wang, Wenhui Kuang, and other anonymous reviewers for their helpful comments on the manuscript.

References

  1. Acosta JA, Faz A, Martínez-Martínez S, Zornoza R, Carmona DM, Kabas S (2011) Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J Geochem Explor 109:8–17. doi: 10.1016/j.gexplo.2011.01.004 CrossRefGoogle Scholar
  2. Alloway B (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils, vol 22. environmental pollution. Springer, Netherlands, pp 11–50. doi: 10.1007/978-94-007-4470-7_2 CrossRefGoogle Scholar
  3. Arenas-Lago D, Andrade ML, Lago-Vila M, Rodríguez-Seijo A, Vega FA (2014) Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions. Geoderma 230–231:108–118. doi: 10.1016/j.geoderma.2014.04.011 CrossRefGoogle Scholar
  4. ATSDR (2008) Public health statement of cadmium agency for toxic substances and diseases registry. US Department of Health and Human Services, AtlandaGoogle Scholar
  5. Bes CM, Pardo T, Bernal MP, Clemente R (2014) Assessment of the environmental risks associated with two mine tailing soils from the La Unión-Cartagena (Spain) mining district. J Geochem Explor 147:98–106. doi: 10.1016/j.gexplo.2014.05.020 CrossRefGoogle Scholar
  6. Bradshaw A (1997) Restoration of mined lands: using natural processes. Ecol Eng 8:255–269. doi: 10.1016/S0925-8574(97)00022-0 CrossRefGoogle Scholar
  7. Candeias C, Melo R, Ávila PF, Ferreira da Silva E, Salgueiro AR, Teixeira JP (2014) Heavy metal pollution in mine–soil–plant system in S. Francisco de Assis : Panasqueira mine (Portugal). Appl Geochem 44:12–26. doi: 10.1016/j.apgeochem.2013.07.009 CrossRefGoogle Scholar
  8. Chang J, Zhang H, Ji M, Chen X-I (2009) Case study on the redevelopment of industrial wasteland in resource-exhausted mining area. Proc Earth Planetary Sc 1:1140–1146. doi: 10.1016/j.proeps.2009.09.175 CrossRefGoogle Scholar
  9. Cheng F, Geertman S, Kuffer M, Zhan Q (2011) An integrative methodology to improve brownfield redevelopment planning in Chinese cities: a case study of Futian Shenzhen Computers. Environ Urban Syst 35:388–398. doi: 10.1016/j.compenvurbsys.2011.05.007 CrossRefGoogle Scholar
  10. Cheng H, Li M, Zhao C, Li K, Peng M, Qin A, Cheng X (2014) Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor 139:31–52. doi: 10.1016/j.gexplo.2013.08.012 CrossRefGoogle Scholar
  11. Christoforou CS, Salmon LG, Hannigan MP, Solomon PA, Cass GR (2000) Trends in fine particle concentration and chemical composition in southern California. J Air Waste Manag Assoc (1995) 50:43–53CrossRefGoogle Scholar
  12. Chrysochoou M, Brown K, Dahal G, Granda-Carvajal C, Segerson K, Garrick N, Bagtzoglou A (2012) A GIS and indexing scheme to screen brownfields for area-wide redevelopment planning. Landsc Urb Plan 105:187–198. doi: 10.1016/j.landurbplan.2011.12.010 CrossRefGoogle Scholar
  13. CMYED (2007) China mining yearbook 2006. CMYED, BeijingGoogle Scholar
  14. Drew LJ, Qingrun M, Weijun S (1990) The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos 26:43–65. doi: 10.1016/0024-4937(90)90040-8 CrossRefGoogle Scholar
  15. Escarré J et al (2011) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water Air Soil Pollut 216:485–504. doi: 10.1007/s11270-010-0547-1 CrossRefGoogle Scholar
  16. Esmaeili A, Moore F, Keshavarzi B, Jaafarzadeh N, Kermani M (2014) A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone. Iran Catena 121:88–98. doi: 10.1016/j.catena.2014.05.003 CrossRefGoogle Scholar
  17. Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324. doi: 10.1016/S0269-7491(00)00243-8 CrossRefGoogle Scholar
  18. FAO (2014) World reference base for soil resources. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  19. Fryer M, Collins CD, Ferrier H, Colvile RN, Nieuwenhuijsen MJ (2006) Human exposure modelling for chemical risk assessment: a review of current approaches and research and policy implications. Environ Sci Policy 9:261–274. doi: 10.1016/j.envsci.2005.11.011 CrossRefGoogle Scholar
  20. Fu S, Wei CY (2012) Multivariate and spatial analysis of heavy metal sources and variations in a large old antimony mine, China. J Soils Sedim 13:106–116. doi: 10.1007/s11368-012-0587-9 CrossRefGoogle Scholar
  21. Guo W, Zhao R, Zhao W, Fu R, Guo J, Bi N, Zhang J (2013) Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Appl Soil Ecol 72:85–92. doi: 10.1016/j.apsoil.2013.06.001 CrossRefGoogle Scholar
  22. Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14:975–1001. doi: 10.1016/0043-1354(80)90143-8 CrossRefGoogle Scholar
  23. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. doi: 10.1016/j.jtemb.2005.02.010 CrossRefGoogle Scholar
  24. Hough RL, Breward N, Young SD, Crout NM, Tye AM, Moir AM, Thornton I (2004) Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health Perspect 112:215–221CrossRefGoogle Scholar
  25. Huang L-M, Deng C-B, Huang N, Huang X-J (2013) Multivariate statistical approach to identify heavy metal sources in agricultural soil around an abandoned Pb–Zn mine in Guangxi Zhuang Autonomous Region, China. Environ Earth Sci 68:1331–1348. doi: 10.1007/s12665-012-1831-8 CrossRefGoogle Scholar
  26. Jennings AA, Cox AN, Hise SJ, Petersen EJ (2002) Heavy metal contamination in the brownfield soils of cleveland. Soil Sedim Contam 11:719–750. doi: 10.1080/20025891107069 CrossRefGoogle Scholar
  27. Ji K et al (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ Pollut 178:322–328. doi: 10.1016/j.envpol.2013.03.031 CrossRefGoogle Scholar
  28. Khalil A, Hanich L, Hakkou R, Lepage M (2014) GIS-based environmental database for assessing the mine pollution: A case study of an abandoned mine site in Morocco. J Geochem Explor 144(Part C):468–477. doi: 10.1016/j.gexplo.2014.03.023 CrossRefGoogle Scholar
  29. Lam NS (2009) International encyclopedia of human geography. In: Kitchin R, Thrift N (eds) Spatial interpolation. Elsevier, Oxford, p 369. doi: 10.1016/B978-008044910-4.00530-7 Google Scholar
  30. Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53. doi: 10.1016/j.scitotenv.2005.05.003 CrossRefGoogle Scholar
  31. Li X, Feng L (2012) Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmos Environ 47:58–65. doi: 10.1016/j.atmosenv.2011.11.041 CrossRefGoogle Scholar
  32. Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inf 6:228–241. doi: 10.1016/j.ecoinf.2010.12.003 CrossRefGoogle Scholar
  33. Li J, Hong M, Yin X, Liu J (2010) Effects of the accumulation of the rare earth elements on soil macrofauna community. J Rare Earths 28:957–964. doi: 10.1016/S1002-0721(09)60233-7 CrossRefGoogle Scholar
  34. Li J, Huabo D, Pixing S (2011) Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis. Waste Manag Res ISWA 29:727–738. doi: 10.1177/0734242x10397580 CrossRefGoogle Scholar
  35. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853. doi: 10.1016/j.scitotenv.2013.08.090 CrossRefGoogle Scholar
  36. Li P, Lin C, Cheng H, Duan X, Lei K (2015) Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf 113:391–399. doi: 10.1016/j.ecoenv.2014.12.025 CrossRefGoogle Scholar
  37. Liu G, Shu H (2003) Research progress of ecological restoration in mine spoils. Jiangxi For Sci Technol 02:21–25Google Scholar
  38. Liu H, Probst A, Liao B (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166. doi: 10.1016/j.scitotenv.2004.07.030 CrossRefGoogle Scholar
  39. Liu Y-G, Zhang H-Z, Zeng G-M, Huang B-R, Li X (2006) Heavy metal accumulation in plants on Mn mine tailings. Pedosphere 16:131–136. doi: 10.1016/S1002-0160(06)60035-0 CrossRefGoogle Scholar
  40. Liu G, Tao L, Liu X, Hou J, Wang A, Li R (2013) Heavy metal speciation and pollution of agricultural soils along Jishui river in non-ferrous metal mine area in Jiangxi Province, China. J Geochem Explor 132:156–163. doi: 10.1016/j.gexplo.2013.06.017 CrossRefGoogle Scholar
  41. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243. doi: 10.1016/S0048-9697(02)00273-5 CrossRefGoogle Scholar
  42. MEPPRC (2006) Report on the state of the environment in China. http://english.mep.gov.cn/standards_reports/soe/SOE2006/200711/t20071106_112569.htm
  43. Miao Z, Marrs R (2000) Ecological restoration and land reclamation in open-cast mines in Shanxi Province, China. J Environ Manag 59:205–215. doi: 10.1006/jema.2000.0353 CrossRefGoogle Scholar
  44. Mirzaei R, Ghorbani H, Hafezi Moghaddas N, Martín JAR (2014) Ecological risk of heavy metal hotspots in topsoils in the Province of Golestan, Iran. J Geochem Explor. doi: 10.1016/j.gexplo.2014.06.011 Google Scholar
  45. Monterroso C, Rodríguez F, Chaves R, Diez J, Becerra-Castro C, Kidd PS, Macías F (2014) Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl Geochem 44:3–11. doi: 10.1016/j.apgeochem.2013.09.001 CrossRefGoogle Scholar
  46. Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193. doi: 10.1016/j.gexplo.2007.04.011 CrossRefGoogle Scholar
  47. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi: 10.1038/333134a0 CrossRefGoogle Scholar
  48. NSPRC (1995) National Standards of the People’s Republic of China (NSPRC). Standards for Soil Environmental Quality. GB15618-1995Google Scholar
  49. Pardo T, Bernal MP, Clemente R (2014a) Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I—effects on trace elements and nutrients solubility and leaching risk. Chemosphere 107:121–128. doi: 10.1016/j.chemosphere.2014.03.023 CrossRefGoogle Scholar
  50. Pardo T, Clemente R, Alvarenga P, Bernal MP (2014b) Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II—biological and ecotoxicological evaluation. Chemosphere 107:101–108. doi: 10.1016/j.chemosphere.2014.03.017 CrossRefGoogle Scholar
  51. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365. doi: 10.3390/ijerph7041342 CrossRefGoogle Scholar
  52. Sardinha ID, Craveiro D, Milheiras S (2013) A sustainability framework for redevelopment of rural brownfields: stakeholder participation at SÃO DOMINGOS mine, Portugal. J Clean Prod 57:200–208. doi: 10.1016/j.jclepro.2013.05.042 CrossRefGoogle Scholar
  53. S-h H (2014) Fractional distribution and risk assessment of heavy metal contaminated soil in vicinity of a lead/zinc mine. Trans Nonferrous Met Soc China 24:3324–3331. doi: 10.1016/S1003-6326(14)63473-7 CrossRefGoogle Scholar
  54. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. Paper presented at the proceedings of the 1968 23rd ACM national conference, SimonGoogle Scholar
  55. Song L, Jian J, Tan D-J, Xie H-B, Luo Z-F, Gao B (2015) Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China. Int J Appl Earth Obs Geoinf 34:1–9. doi: 10.1016/j.jag.2014.06.013 CrossRefGoogle Scholar
  56. Tang Z et al (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol Environ Saf 122:343–351. doi: 10.1016/j.ecoenv.2015.08.006 CrossRefGoogle Scholar
  57. Vega FA, Covelo EF, Andrade ML (2006) Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. J Colloid Interface Sci 298:582–592. doi: 10.1016/j.jcis.2006.01.012 CrossRefGoogle Scholar
  58. Wahsha M, Bini C, Argese E, Minello F, Fontana S, Wahsheh H (2012) Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy. J Geochem Explor 123:19–24. doi: 10.1016/j.gexplo.2012.07.004 CrossRefGoogle Scholar
  59. Wei C, Wang C, Yang L (2009) Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China. J Environ Sci 21:1230–1236. doi: 10.1016/S1001-0742(08)62409-2 CrossRefGoogle Scholar
  60. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780. doi: 10.1016/S0045-6535(02)00232-1 CrossRefGoogle Scholar
  61. Wu C (2008) Bayan Obo controversy: carbonatites versus iron oxide-Cu-Au-(REE-U). Resour Geol 58:348–354. doi: 10.1111/j.1751-3928.2008.00069.x CrossRefGoogle Scholar
  62. Xie Y, Chen T-B, Lei M, Yang J, Guo Q-J, Song B, Zhou X-Y (2011) Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere 82:468–476. doi: 10.1016/j.chemosphere.2010.09.053 CrossRefGoogle Scholar
  63. Xu S, Tao S (2004) Coregionalization analysis of heavy metals in the surface soil of Inner Mongolia. Sci Total Environ 320:73–87. doi: 10.1016/s0048-9697(03)00450-9 CrossRefGoogle Scholar
  64. Yan W et al (2015) The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead–zinc mine in Southeastern China. Soil Tillage Res 153:120–130. doi: 10.1016/j.still.2015.05.013 CrossRefGoogle Scholar
  65. Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor 108:27–38. doi: 10.1016/j.gexplo.2010.09.006 CrossRefGoogle Scholar
  66. Yuan Z, Ge B, Chenyu W, Zhongqin Z, Xianjiang Y (1992) Geological features and genesis of the Bayan Obo REE ore deposit, Inner Mongolia, China. Appl Geochem 7:429–442. doi: 10.1016/0883-2927(92)90004-M CrossRefGoogle Scholar
  67. Zhang S, Lin Y, Hua X, Yigang X, Tian M, Xiliu J (2007) The facing problems and countermeasures of chinese contaminated cite management. Environ Sci Manag 6:5–7Google Scholar
  68. Zhang X, Yang L, Li Y, Li H, Wang W, Ye B (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184:2261–2273. doi: 10.1007/s10661-011-2115-6 CrossRefGoogle Scholar
  69. Zhao H, Xia B, Fan C, Zhao P, Shen S (2012) Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci Total Environ 417–418:45–54. doi: 10.1016/j.scitotenv.2011.12.047 CrossRefGoogle Scholar
  70. Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561. doi: 10.1016/j.scitotenv.2008.10.061 CrossRefGoogle Scholar
  71. Zhuang P, Li Z-A, Zou B, Xia H-P, Wang G (2013) Heavy metal contamination in soil and Soybean near the Dabaoshan Mine, South China. Pedosphere 23:298–304. doi: 10.1016/S1002-0160(13)60019-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations