Skip to main content

Advertisement

Log in

Stricter Ozone Ambient Air Quality Standard Has Beneficial Effect on Ponderosa Pine in California

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Ambient air quality standards and control strategies are implemented to protect humans and vegetation from adverse effects. We used a process-based tree-growth model (TREGRO) to show that over the past 37 years, changes in O3 exposure, with accompanying variation in climate, are reflected in changes in the growth of Pinus ponderosa Dougl. ex Laws. in the San Bernardino Mountains near Los Angeles, California, USA. Despite variation in temperature and precipitation over the study period (1963–1999), O3 exposure consistently reduced simulated tree growth. Simulated growth reductions increased concurrent with increasing O3 exposure. The maximum growth reduction occurred in 1979. As O3 exposures decreased during the 1980s and 1990s, effects on growth also decreased. This implies that emission control strategies taken to reduce exposures to attain O3 standards benefited P. ponderosa growth in the San Bernardino Mountains. This modeling approach provides a powerful tool for solving the difficult problem of evaluating regulatory effectiveness by simulating plant response using long-term climate and air pollution exposure records for a given region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

Literature Cited

  1. Alexis A., Delao A., Garcia A., Nystrom M., Rosenkranz K. 2001. The 2001 California almanac of emissions and air quality. California Planning and Technical Support Division, Air Resources Board, Sacramento, California (http://www.arb.ca.gov/aqd/almanac01/almanac01.htm)

  2. C. P. Andersen W. E. Hogsett R. Wessling M. Plocher (1991) ArticleTitleOzone decreases spring root growth and root carbohydrate content in ponderosa pine in the year following exposure Canadian Journal Forest Research 21 1288–1291 Occurrence Handle1:CAS:528:DyaK3MXmtVSlsLw%3D

    CAS  Google Scholar 

  3. M. J. Arbaugh P. R. Miller J. J. Carrol B. Takemoto T. Procter (1998) ArticleTitleRelationships of ozone exposure to pine injury in the Sierra Nevada and San Bernardino Mountains of California, USA Environmental Pollution 101 291–301 Occurrence Handle10.1016/S0269-7491(98)00027-X Occurrence Handle1:CAS:528:DyaK1cXmsFOmuro%3D Occurrence Handle15093091

    Article  CAS  PubMed  Google Scholar 

  4. M. J. Arbaugh D. L. Peterson P. R. Miller (1999) Air pollution effects on growth of ponderosa pine, jeffrey pine, and bigcone douglas-fir P. R. Miller J. R. McBride (Eds) Oxidant air pollution impacts in the montane forests of Southern California. A case study of the San Bernardino Mountains Springer-Verlag New York 179–207

    Google Scholar 

  5. Asher J. E. 1956. Cited in Miller, P. R., and J. R. McBride. 1975. Effects of air pollutants on forests. Pages 195–235 in J. B. Mudd, and T. T. Kozlowski (eds.), Responses of plant to air pollutants. Academic Press, New York.

  6. D. G. Bielenberg J. P. Lynch E. J. Pell (2001) ArticleTitleA decline in nitrogen availability affects plant responses to ozone New Phytologist 151 413–425 Occurrence Handle10.1046/j.1469-8137.2001.00185.x Occurrence Handle1:CAS:528:DC%2BD3MXmsF2hsb4%3D

    Article  CAS  Google Scholar 

  7. A. Bytnerowicz N. E. Grulke (1992) Physiological effects of air pollutants on western trees R. K. Olson D. Binkley M. Böhm (Eds) The response of western forests to air pollution Springer-Verlag New York 183–233

    Google Scholar 

  8. C. S. Clark J. A. Weber E. H. Lee W. E. Hogsett (1995) ArticleTitleAccentuation of gas exchange gradients in flushes of ponderosa pine exposed to ozone Tree Physiology 15 181–189 Occurrence Handle1:CAS:528:DyaK2MXkvF2iu7o%3D Occurrence Handle14965974

    CAS  PubMed  Google Scholar 

  9. J. V. H. Constable G. E. Taylor Jr (1997) ArticleTitleModeling the effects of elevated tropospheric O3 on two varieties of Pinus ponderosa Canadian Journal of Forest Research 27 527–537 Occurrence Handle10.1139/cjfr-27-4-527 Occurrence Handle1:CAS:528:DyaK2sXksVWqtrg%3D

    Article  CAS  Google Scholar 

  10. J. V. H. Constable A. L. Friend (2000) ArticleTitleSuitability of process-based tree growth models for addressing tree response to climate change Environmental Pollution 110 47–59 Occurrence Handle10.1016/S0269-7491(99)00289-4 Occurrence Handle1:CAS:528:DC%2BD3cXksFyitbk%3D Occurrence Handle15092855

    Article  CAS  PubMed  Google Scholar 

  11. P. I. Coyne G. E. Bingham (1981) ArticleTitleComparative ozone dose response of gas exchange in a ponderosa pine stand exposed to long-term fumigations Journal Air Pollution Control Association 31 38–41 Occurrence Handle1:CAS:528:DyaL3MXlvFeqtw%3D%3D

    CAS  Google Scholar 

  12. J. Dozier (1980) ArticleTitleClear-sky spectral solar radiation model for snow-covered mountainous terrain Water Resources Research 16 709–718

    Google Scholar 

  13. R. Dubayah V. Van Katwijk (1992) ArticleTitleThe topographic distribution of annual incoming solar radiation in the Rio Grande basin Geophysical Research Letters 19 2231–2234

    Google Scholar 

  14. InstitutionalAuthorNameEarthinfo (1992) Earthinfo’s National Climate Data Center summary of the day, user’s manual Earthinfo, Inc Boulder, Colorado

    Google Scholar 

  15. M. E. Fenn M. A. Poth D. W. Johnson (1996) ArticleTitleEvidence for nitrogen saturation in the San Bernardino Mountains of southern California Forest Ecology and Management 82 211–230 Occurrence Handle10.1016/0378-1127(95)03668-7

    Article  Google Scholar 

  16. F. M. Fujioka J. O. Roads S.-C. Chen (1999) Climatology P. R. Miller J. R. McBride (Eds) Oxidant air pollution impacts in the montane forests of Southern California. A case study of the San Bernardino Mountains Springer-Verlag New York 28–43

    Google Scholar 

  17. K. Green R. Wright (1977) ArticleTitleField response of photosynthesis to CO2 enhancement in ponderosa pine Ecology 58 687–692 Occurrence Handle1:CAS:528:DyaE2sXlsVyrt70%3D

    CAS  Google Scholar 

  18. N. E. Grulke C. P. Andersen M. E. Fenn P. R. Miller (1998) ArticleTitleOzone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California Environmental Pollution 103 63–73 Occurrence Handle10.1016/S0269-7491(98)00130-4 Occurrence Handle1:CAS:528:DyaK1MXhvFWh

    Article  CAS  Google Scholar 

  19. N. E. Grulke L. Balduman (1999) ArticleTitleDeciduous conifers: High N deposition and O3 exposure effects on growth and biomass allocation in ponderosa pine Water, Air, and Soil Pollution 116 235–248

    Google Scholar 

  20. N. E. Grulke (1999) Physiological responses of ponderosa pine to gradients of environmental stressors P. R. Miller J. R. McBride (Eds) Oxidant air pollution impacts in the montane forests of Southern California. A case study of the San Bernardino Mountains Springer-Verlag New York 126–163

    Google Scholar 

  21. N. E. Grulke C. P. Andersen W. E. Hogsett (2001) ArticleTitleSeasonal changes in above- and belowground carbohydrate concentrations on ponderosa pine along a pollution gradient Tree Physiology 21 173–181 Occurrence Handle1:CAS:528:DC%2BD3MXhtF2hs7k%3D Occurrence Handle11303648

    CAS  PubMed  Google Scholar 

  22. N. E. Grulke W. A. Retzlaff (2001) ArticleTitleChanges in physiological attributes of ponderosa pine from seedling to mature tree Tree Physiology 21 275–286 Occurrence Handle1:STN:280:DC%2BD3M7mtlOmsw%3D%3D Occurrence Handle11262919

    CAS  PubMed  Google Scholar 

  23. N. E. Grulke H. K. Preisler C. Rose J. Kirsch L. Balduman (2002) ArticleTitleO3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural stands New Phytologist 154 621–631 Occurrence Handle10.1046/j.1469-8137.2002.00403.x Occurrence Handle1:CAS:528:DC%2BD38XkslWjtLk%3D

    Article  CAS  Google Scholar 

  24. N. E. Grulke R. Alonso T. Nguyen W. Dobrowolski (2004) ArticleTitleStomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics Tree Physiology . .

    Google Scholar 

  25. W. E. Hogsett D. T. Tingey (1988) Ozone exposure indices: concepts for development and evaluation of their use W. W. Heck O. C. Taylor D. T. Tingey (Eds) Assessment of crop loss from air pollutants Elsevier Applied Science Publishers Ltd New York 107–138

    Google Scholar 

  26. W. E. Hogsett D. T. Tingey C. Hendricks D. Rossi (1989) Sensitivity of western conifers to SO2 and seasonal interactions of acid fog and ozone R. K. Olson A. S. Lefohn (Eds) Effects of air pollutants on western forests. APCA Transaction Series Air and Waste Management Association Pittsburgh, PA 469–491

    Google Scholar 

  27. Hungerford R. D.,Nemani R. R.,Running S. W.,Coughlan J. C. 1989. MTCLIM: Mountain Microclimate Simulation Model. Research Paper INT-414. U.S. Department of Agriculture, U.S. Forest Service, Intermountain Research Station, Ogden, Utah, 52 pp.

  28. J. Laurence R. Kohut R. Amundson (1993) ArticleTitleUse of TREGRO to simulate the effects of ozone on the growth of red spruce seedlings Forest Science 39 453–464

    Google Scholar 

  29. E. H. Lee D. T. Tingey W. E. Hogsett (1988) ArticleTitleEvaluation of ozone exposure indices in exposure-response modeling Environmental Pollution 55 43–62 Occurrence Handle10.1016/0269-7491(88)90024-3

    Article  Google Scholar 

  30. E. H. Lee D. T. Tingey W. E. Hogsett J. A. Laurence (2003) ArticleTitleHistory of tropospheric ozone for the San Bernardino Mountains of Southern California, 1963–1999 Atmospheric Environment 37 2705–2717 Occurrence Handle10.1016/S1352-2310(03)00203-6 Occurrence Handle1:CAS:528:DC%2BD3sXktVeju7s%3D

    Article  CAS  Google Scholar 

  31. J. R. McBride R. D. Laven (1999) Impact of oxidant air pollutants on forest succession in the mixed conifer forests of the San Bernardino Mountains P. R. Miller J. R. McBride (Eds) Oxidant air pollution impacts in the montane forests of Southern California. A case study of the San Bernardino Mountains Springer-Verlag New York 338–352

    Google Scholar 

  32. J. T. Middleton J. B. Kendrick Jr H. W. Schwalm (1950) ArticleTitleInjury to herbaceous plant by smog or air pollution Plant Disease Reporter 34 245–252 Occurrence Handle1:CAS:528:DyaG3MXhs1aq

    CAS  Google Scholar 

  33. P. R. Miller L. S. Evans (1974) ArticleTitleHistopathology of oxidant injury and winter fleck injury on needles of western pines Phytopathology 64 801–806

    Google Scholar 

  34. P. R. Miller J. R. (eds.). McBride (1999) Oxidant air pollution impacts in the montane forests of Southern California. A case study of the San Bernardino Mountains Springer-Verlag New York 424 pp

    Google Scholar 

  35. P. R. Miller J. R. Parmeter Jr O. C. Taylor E. A. Cardiff (1963) ArticleTitleOzone injury to the foliage of ponderosa pine Phytopathology 53 1072–1076 Occurrence Handle1:CAS:528:DyaF2cXisV2qug%3D%3D

    CAS  Google Scholar 

  36. P. R. Miller J. Rechel (1999) Temporal changes in crown condition indices, needle litterfall, and collateral needle injury of ponderosa and jeffrey pines P. R. Miller J. R. McBride (Eds) Oxidant air pollution impacts in the montane forests of Southern California. A case study of the San Bernardino Mountains Springer-Verlag New York 164–178

    Google Scholar 

  37. S. V. Ollinger J. D. Aber P. B. Reich (1997) ArticleTitleSimulating ozone effects on forest productivity: interactions among leaf-, canopy- and stand-level processes Ecological Applications 7 1237–1251

    Google Scholar 

  38. J. A. Panek A. H. Goldstein (2001) ArticleTitleResponse of stomatal conductance to drought in ponderosa pine: Implications for carbon and ozone uptake Tree Physiology 21 337–344 Occurrence Handle1:STN:280:DC%2BD3M7mtlOmtQ%3D%3D Occurrence Handle11262925

    CAS  PubMed  Google Scholar 

  39. J. A. Panek (2004) ArticleTitleOzone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: Measured trends and parameters for uptake modeling Tree Physiology 22 277–290

    Google Scholar 

  40. J. Pronos L. Merrill D. Dahlsten (1999) Insects and pathogens in a pollution-stressed forest P. R. Miller J. R. McBride (Eds) Oxidant air pollution impacts in the montane forests of Southern California. A case study of the San Bernardino Mountains Springer-Verlag New York 317–337

    Google Scholar 

  41. E. B. Rastetter (1996) ArticleTitleValidating models of ecosystem response to global change Bioscience 46 190–198

    Google Scholar 

  42. W. A. Retzlaff M. A. Arthur N. E. Grulke D. A. Weinstein B. Gollands (2000) ArticleTitleUse of a single-tree simulation model to predict effects of ozone and drought on growth of a white fir tree Tree Physiology 20 195–202 Occurrence Handle1:CAS:528:DC%2BD3cXhvF2rsLc%3D Occurrence Handle12651472

    CAS  PubMed  Google Scholar 

  43. B. L. Richards Sr O. C. Taylor G. F. Edmunds Jr (1968) ArticleTitleOzone needle mottle of pine in southern California Journal Air Pollution Control Association 18 73–77

    Google Scholar 

  44. Staszak J.,Grulke N. E.,Prus-Glowacki W. 2004. “Genetic differences of Pinus-Ponderosa [Doug L. Ex Laws] trees tolerant and Sensitive to Ozone” Water, Air and Soil Pollution, 153: 3–14

    Google Scholar 

  45. PJ Temple G. H. Reichers P. R. Miller (1992) ArticleTitleFoliar injury responses of ponderosa pine seedlings to ozone, wet and dry acidic deposition, and drought Environmental and Experimental Botany 32 101–113 Occurrence Handle10.1016/0098-8472(92)90035-Z Occurrence Handle1:CAS:528:DyaK38XktVansrg%3D

    Article  CAS  Google Scholar 

  46. D. T. Tingey J. A. Laurence J. A. Weber J. Greene W. E. Hogsett S. Brown E. H. Lee (2001) ArticleTitleElevated CO2 and temperature alter the response of Pinus ponderosa to ozone: A simulation analysis Ecological Applications 11 1412–1424

    Google Scholar 

  47. D. T. Tingey R. G. Wilhour C. Standley (1976) ArticleTitleThe effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings Forest Science 22 234–241 Occurrence Handle1:CAS:528:DyaE2sXktFKkurs%3D

    CAS  Google Scholar 

  48. J. A. Weber C. S. Clark W. E. Hogsett (1993) ArticleTitleAnalysis of the relationships among O3 uptake, conductance, and photosynthesis in needles of Pinus ponderosa Tree Physiology 13 157–172 Occurrence Handle1:CAS:528:DyaK2cXht1OisbY%3D Occurrence Handle14969893

    CAS  PubMed  Google Scholar 

  49. J. A. Weber M. D. Plocher W. E. Hogsett (1991) ArticleTitleEffect of ozone exposure on leaf production and retention in tree seedlings Bulletin Ecological Society of America 72 282–283

    Google Scholar 

  50. D. A. Weinstein R. Beloin (1990) Evaluating effects of pollutants on integrated tree processes: A model of carbon, water, and nutrient balances R. K. Dixon R. S. Medldahl G. A. Ruark W. G. Warren (Eds) Process modeling of forest growth responses to environmental stress Timber Press Portland, Oregon 313–323

    Google Scholar 

  51. D. A. Weinstein R. M. Beloin R. D. Yanai (1991) ArticleTitleModeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses Tree Physiology 9 127–146 Occurrence Handle1:CAS:528:DyaK38Xot1Oksg%3D%3D Occurrence Handle14972860

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The U.S. Environmental Protection Agency has supported the research described in this article. The research has been subjected to the Agency’s peer and administrative review and has been approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Tingey.

Additional information

Phone 541 754-4621 Fax 541 754-4799

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tingey, D., Hogsett, W., Lee, E. et al. Stricter Ozone Ambient Air Quality Standard Has Beneficial Effect on Ponderosa Pine in California. Environmental Management 34, 397–405 (2004). https://doi.org/10.1007/s00267-004-0319-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-004-0319-z

Navigation