Skip to main content

Effects of Ozone on Chinese Trees

  • Chapter
  • First Online:
Air Pollution Impacts on Plants in East Asia

Abstract

This chapter reviews the effects of elevated ozone on tree species in China, based on the results of studies in the past two decades. The high ozone concentration in summer in most parts of China has induced typical ozone symptoms in urban and mountain forest tree species. In experiments using open-top chambers, elevated ozone affected the growth, gas-exchange rate, foliar microscopy, antioxidant systems, and biogenic volatile organic compound (BVOC) emissions in trees. The effects of ozone on biomass accumulation depended on the ozone concentration, tree species sensitivity, and exposure duration. The ozone uptake of individual tree species was also investigated by the sap flow technique. Further studies were conducted on the interactions between O3 and other environmental change factors, such as increasing CO2 concentrations, increased nitrogen deposition, and drought. Future needs for research include the development of an O3 flux model for the most widely used tree species and the assessment of ozone removal by urban forests on a regional and a national scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso R et al (2013) Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity. Plant Biol 16:375–384

    Article  Google Scholar 

  • Atkinson R et al (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  • Bussotti F (2008) Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: a critical overview. Global Change Biol 14:2727–2739

    Google Scholar 

  • Bussotti F et al (2005) Ozone foliar symptoms in woody plant species assessed with ultrastructural and fluorescence analysis. New Phytol 166:941–955

    Article  Google Scholar 

  • Bussotti F et al (2007) Photosynthesis responses to ozone in young trees of three species with different sensitivities, in a 2-year open-top chamber experiment (Curno, Italy). Physiol Plant 130:122–135

    Article  CAS  Google Scholar 

  • Calatayud V et al (2007) Foliar, physiological and growth responses of four maple species exposed to ozone. Water Air Soil Pollut 185:239–254

    Article  CAS  Google Scholar 

  • Calatayud V et al (2010) Contrasting ozone sensitivity in related evergreen and deciduous shrubs. Environ Pollut 158:3580–3587

    Article  CAS  Google Scholar 

  • Calatayud V et al (2011a) Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ Pollut 159:55–63

    Article  CAS  Google Scholar 

  • Calatayud V et al (2011b) Physiological, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae. Ecotoxicol Environ Saf 74:1131–1138

    Article  CAS  Google Scholar 

  • Calfapietra C et al (2009) Volatile organic compounds from Italian vegetation and their interaction with ozone. Environ Pollut 157:1478–1486

    Article  CAS  Google Scholar 

  • Chen B et al (2015a) Uptake characteristic of ozone on Poplar canopy by sap flow techniques. J Northeast For Univ 43:72–79 (In Chinese)

    Google Scholar 

  • Chen B et al (2015b) Ozone uptake characteristics in different dominance hierarchies of poplar plantation. J Beijing For Univ 37:29–36

    Google Scholar 

  • De Vries W et al (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manage 258:1814–1823

    Article  Google Scholar 

  • Dizengremel et al (2013) Integrative leaf-level ozone phytotoxic ozone dose assessment for forest risk modeling. In: Matyssek R et al (eds) Climate change, air pollution and global challenges, vol 13, Developments in Environmental Sciences. Elsevier, Netherlands, pp 267–288

    Google Scholar 

  • Dudareva N et al (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Fehsenfeld et al (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob Biogeochem Cycles 6:389–430

    Article  CAS  Google Scholar 

  • Feng ZZ et al (2008) Sensitivity of Metasequoia glyptostroboides to ozone stress. Photosynthetica 46:463–465

    Article  CAS  Google Scholar 

  • Feng ZZ et al (2011) Effects of ozone exposure on Sub-Tropical evergreen Cinnamomum Camphora seedlings grown in different nitrogen loads. Trees 25:617–625

    Article  CAS  Google Scholar 

  • Feng ZZ et al (2014) Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environ Pollut 193:296–301

    Article  CAS  Google Scholar 

  • Fowler D et al (2013) The global nitrogen cycle in the twenty-first century. Phil Trans R Soc B 368:20130164

    Article  Google Scholar 

  • Fuentes JD et al (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc 81:1537–1575

    Article  Google Scholar 

  • Gao F et al (2016) Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China. Ecol Indic 67:367–379

    Google Scholar 

  • Grantz D (2003) Ozone impacts on cotton: towards an integrated mechanism. Environ Pollut 126:331–344

    Article  CAS  Google Scholar 

  • Gravano E et al (2003) Foliar response of an Ailanthus altissima clone in two sites with different levels of ozone-pollution. Envi ron Pollut 121:137–146

    Google Scholar 

  • Guenther AB et al (1994) Natural volatile organic compound emission rates for U.S. woodland landscapes. Atmos Environ 28:1197–1210

    Article  CAS  Google Scholar 

  • Günthardt-Goerg MS et al (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environ Pollut 147:467–488

    Article  Google Scholar 

  • Handley T et al (2008) Interactive effects of O3 exposure on California black oak (Quercus kelloggii Newb.) seedlings with and without N amendment. Environ Pollut 156:53–60

    Article  CAS  Google Scholar 

  • Harley PC et al (1999) Ecological and evolutionary aspects of isoprene emission from plants. Oecologia 118:109–123

    Article  Google Scholar 

  • He XY et al (2006) Responses of the anti-oxidative system in leaves of Ginkgo biloba to elevated ozone concentration in an urban area. Bot Stud 47:409–416

    CAS  Google Scholar 

  • He XY et al (2007) Changes in effects of ozone exposure on growth, photosynthesis, and respiration of Ginkgo biloba in Shenyang urban area. Photosynthetica 45:555–561

    Article  CAS  Google Scholar 

  • Hoshika Y et al (2014) Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. Sci Total Environ 481:453–458

    Article  CAS  Google Scholar 

  • Hu EZ et al (2015) Concentration- and flux-based ozone dose-response relationships for five poplar clones grown in North China. Environ Pollut 207:21–30

    Article  CAS  Google Scholar 

  • Huang W et al (2008) Influence of elevated carbon dioxide and ozone on the foliar nonvolatile terpenoids in Ginkgo Biloba. Bull Environ Contam Toxicol 81:432–435

    Article  CAS  Google Scholar 

  • Kesselmeier J et al (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • King JS et al (2005) Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168:623–635

    Article  CAS  Google Scholar 

  • Kivimäenpää M et al (2010) Visible and microscopic needle alterations of mature Aleppo Pine (Pinus halepensis) trees growing on an ozone gradient in eastern Spain. Tree Physiol 30:541–554

    Article  Google Scholar 

  • Li XM et al (2007) Effects of elevated CO2 and/or O3 on hormone IAA in needles of Chinese pine. Plant Growth Regul 53:25–31

    Article  CAS  Google Scholar 

  • Li DW et al (2009a) Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba. Bull Environ Contam Toxicol 82:473–477

    Article  CAS  Google Scholar 

  • Li XM et al (2009b) Influence of elevated CO2 and O3 on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees. Biol Plant 53(2):339–342

    Article  CAS  Google Scholar 

  • Li XM et al (2011) Effects of elevated carbon dioxide and/or ozone on endogenous plant hormones in the leaves of Ginkgo biloba. Acta Physiol Plant 33:129–136

    Article  CAS  Google Scholar 

  • Li L et al (2015) Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China. Environ Pollut 201:34–41

    Article  CAS  Google Scholar 

  • Li P et al (2016) Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels. Tree Physiology 36:1105–1116.

    Google Scholar 

  • Liu XJ et al (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  Google Scholar 

  • Liu XJ et al (2013a) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  Google Scholar 

  • Liu HY et al (2013b) Drought threatened semi-arid ecosystems in the Inner Asia. Agric For Meteorol 178:1–2

    Article  Google Scholar 

  • Loreto F et al (2001) Isoprene produced by leaves protects the photosynthetic apparatus, against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  Google Scholar 

  • Lu T et al (2009) Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidant systems in Ginkgo biloba Leaves. Bull Environ Contam Toxicol 83:92–96

    Article  CAS  Google Scholar 

  • Lu XK et al (2010) Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Chang Biol 16(10):2688–2700

    Article  Google Scholar 

  • Lu XK et al (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Chang Biol 20:3790–3801

    Article  Google Scholar 

  • Matyssek R et al (2006) Interactions between drought and O3 stress in forest trees. Plant Biol 8:11–17

    Article  CAS  Google Scholar 

  • Matyssek R et al (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607

    Article  CAS  Google Scholar 

  • Matyssek R et al (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582

    Article  CAS  Google Scholar 

  • Monson RK et al (2012) Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    Article  CAS  Google Scholar 

  • Niu JF (2012) Effects of elevated ozone and nitrogen deposition on the growth and physiology of Cinnamomum camphora seedlings. Graduate University of Chinese Academy of Sciences, Ph.D. (In Chinese)

    Google Scholar 

  • Niu JF et al (2011) Impact of elevated O3 on visible foliar symptom, growth and biomass of Cinnamomum camphora seedlings under different nitrogen loads. J Environ Monit 13:2873–2879

    Article  CAS  Google Scholar 

  • Niu JF et al (2014) Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedlings exposed to elevated O3. PLoS One 9(6):e98572

    Article  Google Scholar 

  • Nowak DJ and Crane DE (2000) The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions. In: Mark H, Tom B (eds). Integrated tools for natural resources inventories in the 21st century. Gen. Tech. Rep. NC-212. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station. 714–720

    Google Scholar 

  • Nowak DJ et al (2000) A modeling study of the impact of urban trees on ozone. Atmos Environ 34:1601–1613

    Article  CAS  Google Scholar 

  • Paoletti E (2005) Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo. Environ Pollut 134:439–445

    Article  CAS  Google Scholar 

  • Pearson M et al (1994) Effects of exposure to ozone and water stress on the following season’s growth of beech (Fagus sylvatica L.). New Phytol 126:511–515

    Article  CAS  Google Scholar 

  • Pollastrini M et al (2014) Severe drought events increase the sensitivity to ozone on poplar clones. Ecotoxicol Environ Saf 100:94–104

    CAS  Google Scholar 

  • Schaub M et al (2010) Assessment of ozone injury. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Coordinating Centre, Hamburg, 1–22. Available at: http://icp-forests.net/

  • Scott KI et al (1998) Air pollutant uptake by Sacramento’s urban forest. J Arboric 24:224–234

    Google Scholar 

  • Simpson D et al (2014) Ozone-the persistent menace: interactions with the N cycle and climate change. Curr Opin Environ Sustain 9–10:9–19

    Article  Google Scholar 

  • Tausz M et al (2007) Defense and avoidance of ozone under global change. Environ Pollut 147:525–531

    Article  CAS  Google Scholar 

  • Vickers CE et al (2009) A unified mechanism of action for isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  Google Scholar 

  • Wan WX et al (2014) Ozone and ozone injury on plants in and around Beijing, China. Environ Pollut 191:215–222

    Article  CAS  Google Scholar 

  • Wang H et al (2012) Ozone uptake by adult urban trees based on sap flow measurement. Environ Pollut 162:275–286

    Article  CAS  Google Scholar 

  • Wang H et al (2013) Ozone uptake at the canopy level in Robinia pseudoacacia in Beijing based on sap flow measurements. Acta Ecol Sin 33:7323–7331 (In Chinese)

    Article  Google Scholar 

  • Watanabe M et al (2007) Influences of nitrogen load on the growth and photosynthetic responses of Quercus serrata seedling to O3. Trees 21:421–432

    Article  CAS  Google Scholar 

  • Watanabe M et al (2008) Effects of ozone on the growth and photosynthesis of Castanopsis sieboldii seedlings grown under different nitrogen loads. J Agric Meteorol 64:143–155

    Article  Google Scholar 

  • Wieser G et al (2002) Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiol 22:583–590

    Article  Google Scholar 

  • Wieser G et al (2003) Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement. Environ Pollut 126:5–8

    Article  CAS  Google Scholar 

  • Wieser G et al (2006) Quantification of ozone uptake at the stand level in a Pinus canariensis forest in Tenerife, Canary Islands: an approach based on sap flow measurements. Environ Pollut 140:383–386

    Article  CAS  Google Scholar 

  • Wittig V et al (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Chang Biol 15:396–424

    Article  Google Scholar 

  • Xu S et al (2012) Responses of growth, photosynthesis and VOC emissions of Pinus tabulaeformis Carr. exposure to elevated CO2 and/or elevated O3 in an urban area. Bull Environ Contam Toxicol 88:443–448

    Article  CAS  Google Scholar 

  • Xu S et al (2014) Elevated CO2 ameliorated the adverse effect of elevated O3 in previous-year and current-year needles of Pinus tabulaeformis in urban area. Bull Environ Contam Toxicol 92:733–737

    Article  CAS  Google Scholar 

  • Yamaguchi M et al (2007) Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. Trees 21:707–718

    Article  CAS  Google Scholar 

  • Yan K et al (2010a) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Ecotoxicol Environ Saf 69:198–204

    CAS  Google Scholar 

  • Yan K et al (2010b) Elevated CO2 ameliorated oxidative stress induced by elevated O3 in Quercus mongolica. Acta Physiol Plant 32:375–385

    Article  CAS  Google Scholar 

  • Yan K et al (2013) Variation of antioxidant system in Pinus armandii under elevated O3 in an entire growth season. Clean-Soil Air Water 41(1):5–10

    Article  CAS  Google Scholar 

  • Yuan XY et al (2016) Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant, Cell & Environment, 39:2276–2287.

    Google Scholar 

  • Zhang WW (2011) Effects of elevated O3 level on the native tree species in subtropical China. Graduate University of Chinese Academy of Sciences, Ph.D. (in Chinese)

    Google Scholar 

  • Zhang WW et al (2011) Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg a native tree species of subtropical China. Photosynthetica 49:29–36

    Article  Google Scholar 

  • Zhang WW et al (2012) Response of native broadleaved woody species to elevated ozone in subtropical China. Environ Pollut 163:149–157

    Article  CAS  Google Scholar 

  • Zhang WW et al (2014) Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng. Plant Sci 226:182–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaozhong Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Feng, Z., Li, P. (2017). Effects of Ozone on Chinese Trees. In: Izuta, T. (eds) Air Pollution Impacts on Plants in East Asia. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56438-6_13

Download citation

Publish with us

Policies and ethics