Skip to main content

Advertisement

Log in

Application of Decellularized Adipose Matrix as a Bioscaffold in Different Tissue Engineering

  • Review
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

With the development of tissue engineering, the application of decellularized adipose matrix as scaffold material in tissue engineering has been intensively explored due to its wide source and excellent potential in tissue regeneration. Decellularized adipose matrix is a promising candidate for adipose tissue regeneration, while modification of decellularized adipose matrix scaffold can also allow it to transcend the limitations of adipose tissue source properties and applied to other tissue engineering fields, including cartilage and bone tissue engineering, neural tissue engineering, and skin tissue engineering. In this review, we summarized the development of the applications of decellularized adipose matrix in different tissue engineering and present future perspectives.

Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Badylak SF, Freytes DO, Gilbert TW (2015) Reprint of: extracellular matrix as a biological scaffold material: structure and function. Acta Biomaterialia 23:S17-26

    Article  PubMed  Google Scholar 

  2. Yao Q, Zheng YW, Lan QH, Kou L, Xu HL, Zhao YZ (2019) Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater Sci Eng C 104:109942

    Article  CAS  Google Scholar 

  3. Yang JZ, Qiu LH, Xiong SH et al (2020) Decellularized adipose matrix provides an inductive microenvironment for stem cells in tissue regeneration. World J Stem Cells 12(7):585–603

    Article  PubMed  PubMed Central  Google Scholar 

  4. Song M, Liu Y, Hui L (2018) Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep 17(1):138–146

    CAS  PubMed  Google Scholar 

  5. Banyard DA, Borad V, Amezcua E, Wirth GA, Evans GR, Widgerow AD (2016) Preparation, characterization, and clinical implications of human decellularized adipose tissue extracellular matrix (hdam): a comprehensive review. Aesthetic Surg J 36(3):349–357

    Article  Google Scholar 

  6. Flynn LE (2010) The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 31(17):4715–4724

    Article  CAS  PubMed  Google Scholar 

  7. Omidi E, Fuetterer L, Reza Mousavi S, Armstrong RC, Flynn LE, Samani A (2014) Characterization and assessment of hyperelastic and elastic properties of decellularized human adipose tissues. J Biomech 47(15):3657–3663

    Article  PubMed  Google Scholar 

  8. Turner AE, Flynn LE (2012) Design and characterization of tissue-specific extracellular matrix-derived microcarriers. Tissue Eng Part C Methods 18(3):186–197

    Article  CAS  PubMed  Google Scholar 

  9. Turner AE, Yu C, Bianco J, Watkins JF, Flynn LE (2012) The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials 33(18):4490–4499

    Article  CAS  PubMed  Google Scholar 

  10. Yu C, Bianco J, Brown C et al (2013) Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials 34(13):3290–3302

    Article  CAS  PubMed  Google Scholar 

  11. Brown CF, Yan J, Han TT, Marecak DM, Amsden BG, Flynn LE (2015) Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. Biomed Mater (Bristol, England) 10(4):045010

    Article  Google Scholar 

  12. Yu C, Kornmuller A, Brown C, Hoare T, Flynn LE (2017) Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion. Biomaterials 120:66–80

    Article  CAS  PubMed  Google Scholar 

  13. Choi JS, Kim BS, Kim JY et al (2011) Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res Part A 97(3):292–299

    Article  Google Scholar 

  14. Wang L, Johnson JA, Zhang Q, Beahm EK (2013) Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomater 9(11):8921–8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown BN, Freund JM, Han L et al (2011) Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng Part C Methods 17(4):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thomas-Porch C, Li J, Zanata F et al (2018) Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. J Biomed Mater Res Part A 106(9):2481–2493

    Article  CAS  Google Scholar 

  17. Sano H, Orbay H, Terashi H, Hyakusoku H, Ogawa R (2014) Acellular adipose matrix as a natural scaffold for tissue engineering. J Plast Reconstr Aesthet Surg JPRAS 67(1):99–106

    Article  PubMed  Google Scholar 

  18. Wu I, Nahas Z, Kimmerling KA, Rosson GD, Elisseeff JH (2012) An injectable adipose matrix for soft-tissue reconstruction. Plast Reconstr Surg 129(6):1247–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong J, Yu M, Zhang Y, Yin Y, Tian W (2018) Recent developments and clinical potential on decellularized adipose tissue. J Biomed Mater Res Part A 106(9):2563–2574

    Article  CAS  Google Scholar 

  20. Porzionato A, Sfriso MM, Macchi V et al (2013) Decellularized omentum as novel biologic scaffold for reconstructive surgery and regenerative medicine. Eur J Histochem EJH 57(1):e4

    Article  CAS  PubMed  Google Scholar 

  21. Keane TJ, Swinehart IT, Badylak SF (2015) Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84:25–34

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Qu R, Fan T, Ouyang J, Lu F, Dai J (2019) Stepwise adipogenesis of decellularized cellular extracellular matrix regulates adipose tissue-derived stem cell migration and differentiation. Stem Cells Int 2019:1845926

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mohiuddin OA, Campbell B, Poche JN et al (2019) Decellularized adipose tissue hydrogel promotes bone regeneration in critical-sized mouse femoral defect model. Front Bioeng Biotechnol 7:211

    Article  PubMed  PubMed Central  Google Scholar 

  24. Agmon G, Christman KL (2016) Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci 20(4):193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  26. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  27. Zhang T, Lin S, Shao X et al (2018) Regulating osteogenesis and adipogenesis in adipose-derived stem cells by controlling underlying substrate stiffness. J Cell Physiol 233(4):3418–3428

    Article  CAS  PubMed  Google Scholar 

  28. Moncayo-Donoso M, Rico-Llanos GA, Garzón-Alvarado DA, Becerra J, Visser R, Fontanilla MR (2021) The effect of pore directionality of collagen scaffolds on cell differentiation and in vivo osteogenesis. Polymers 13(18):3178

    Article  Google Scholar 

  29. Matsiko A, Gleeson JP, O’Brien FJ (2015) Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng Part A 21(3–4):486–497

    Article  CAS  PubMed  Google Scholar 

  30. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  31. Su T, Xu M, Lu F, Chang Q (2022) Adipogenesis or osteogenesis: destiny decision made by mechanical properties of biomaterials. RSC Adv 12(38):24501–24510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patrick CW Jr (2001) Tissue engineering strategies for adipose tissue repair. Anat Rec 263(4):361–366

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Zhou C, Fu J et al (2021) In situ adipogenesis in biomaterials without cell seeds: current status and perspectives. Front Cell Dev Biol 9:647149

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huleihel L, Hussey GS, Naranjo JD et al (2016) Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv 2(6):e1600502

    Article  PubMed  PubMed Central  Google Scholar 

  35. Han TT, Toutounji S, Amsden BG, Flynn LE (2015) Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds. Biomaterials 72:125–137

    Article  CAS  PubMed  Google Scholar 

  36. Adam Young D, Bajaj V, Christman KL (2014) Award winner for outstanding research in the PhD category, 2014 society for biomaterials annual meeting and exposition, Denver, Colorado, April 16–19, 2014: decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. J Biomed Mater Res Part A 102(6):1641–1651

    Article  CAS  Google Scholar 

  37. Jiang X, Lai XR, Lu JQ, Tang LZ, Zhang JR, Liu HW (2021) Decellularized adipose tissue: a key factor in promoting fat regeneration by recruiting and inducing mesenchymal stem cells. Biochem Biophys Res Commun 541:63–69

    Article  CAS  PubMed  Google Scholar 

  38. Zhang S, Lu Q, Cao T, Toh WS (2016) Adipose tissue and extracellular matrix development by injectable decellularized adipose matrix loaded with basic fibroblast growth factor. Plast Reconstr Surg 137(4):1171–1180

    Article  CAS  PubMed  Google Scholar 

  39. Tan QW, Zhang Y, Luo JC et al (2017) Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation. J Biomed Mater Res Part A 105(6):1756–1764

    Article  CAS  Google Scholar 

  40. Pacelli S, Basu S, Whitlow J et al (2017) Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev 120:50–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stuermer EK, Lipenksy A, Thamm O et al (2015) The role of SDF-1 in homing of human adipose-derived stem cells. Wound Repair Regen 23(1):82–89

    Article  PubMed  Google Scholar 

  42. Agrawal V, Tottey S, Johnson SA, Freund JM, Siu BF, Badylak SF (2011) Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A 17(19–20):2435–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fadera S, Cheng NC, Young TH, Lee IC (2020) In vitro study of SDF-1α-loaded injectable and thermally responsive hydrogels for adipose stem cell therapy by SDF-1/CXCR4 axis. J Mater Chem B 8(45):10360–10372

    Article  CAS  PubMed  Google Scholar 

  44. Liu K, He Y, Lu F (2022) Research progress on the immunogenicity and regeneration of acellular adipose matrix: a mini review. Front Bioeng Biotechnol 10:881523

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu K, He Y, Yao Y et al (2021) Methoxy polyethylene glycol modification promotes adipogenesis by inducing the production of regulatory T cells in xenogeneic acellular adipose matrix. Materials today Bio 12:100161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang W, Cai J, Guan J et al (2021) Characterized the adipogenic capacity of adipose-derived stem cell, extracellular matrix, and microenvironment with fat components grafting. Front Cell Dev Biol 9:723057

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cicuéndez M, Casarrubios L, Feito MJ et al (2021) Effects of human and porcine adipose extracellular matrices decellularized by enzymatic or chemical methods on macrophage polarization and immunocompetence. Int J Mol Sci 22(8):3487

    Article  Google Scholar 

  48. Kokai LE, Schilling BK, Chnari E et al (2019) Injectable allograft adipose matrix supports adipogenic tissue remodeling in the nude mouse and human. Plast Reconstr Surg 143(2):299e–309e

    Article  CAS  PubMed  Google Scholar 

  49. Clark RA, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127(5):1018–1029

    Article  CAS  PubMed  Google Scholar 

  50. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  51. Gonzales KAU, Fuchs E (2017) Skin and its regenerative powers: an alliance between stem cells and their niche. Dev Cell 43(4):387–401

    Article  CAS  PubMed  Google Scholar 

  52. Chouhan D, Dey N, Bhardwaj N, Mandal BB (2019) Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216:119267

    Article  CAS  PubMed  Google Scholar 

  53. Lee YJ, Baek SE, Lee S et al (2019) Wound-healing effect of adipose stem cell-derived extracellular matrix sheet on full-thickness skin defect rat model: Histological and immunohistochemical study. Int Wound J 16(1):286–296

    Article  PubMed  Google Scholar 

  54. Zhou ZQ, Chen Y, Chai M et al (2019) Adipose extracellular matrix promotes skin wound healing by inducing the differentiation of adipose-derived stem cells into fibroblasts. Int J Mol Med 43(2):890–900

    CAS  PubMed  Google Scholar 

  55. Turner NJ, Badylak SF (2015) The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Adv Wound Care 4(8):490–500

    Article  Google Scholar 

  56. Kim EJ, Choi JS, Kim JS, Choi YC, Cho YW (2016) Injectable and thermosensitive soluble extracellular matrix and methylcellulose hydrogels for stem cell delivery in skin wounds. Biomacromolecules 17(1):4–11

    Article  CAS  PubMed  Google Scholar 

  57. Chen Z, Zhang B, Shu J et al (2021) Human decellularized adipose matrix derived hydrogel assists mesenchymal stem cells delivery and accelerates chronic wound healing. J Biomed Mater Res Part A 109(8):1418–1428

    Article  CAS  Google Scholar 

  58. Woo CH, Choi YC, Choi JS, Lee HY, Cho YW (2015) A bilayer composite composed of TiO2-incorporated electrospun chitosan membrane and human extracellular matrix sheet as a wound dressing. J Biomater Sci Polym Ed 26(13):841–854

    Article  CAS  PubMed  Google Scholar 

  59. Tang KC, Yang KC, Lin CW et al (2019) Human adipose-derived stem cell secreted extracellular matrix incorporated into electrospun poly(lactic-co-glycolic acid) nanofibrous dressing for enhancing wound healing. Polymers 11(10):1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR (2021) Membranous extracellular matrix-based scaffolds for skin wound healing. Pharmaceutics 13(11):1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim YS, Majid M, Melchiorri AJ, Mikos AG (2019) Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Trans Med 4(1):83–95

    Article  Google Scholar 

  63. Ibsirlioglu T, Elçin AE, Elçin YM (2020) Decellularized biological scaffold and stem cells from autologous human adipose tissue for cartilage tissue engineering. Methods 171:97–107

    Article  CAS  PubMed  Google Scholar 

  64. Cheng CW, Solorio LD, Alsberg E (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 32(2):462–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Estes BT, Wu AW, Storms RW, Guilak F (2006) Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol 209(3):987–995

    Article  CAS  PubMed  Google Scholar 

  66. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13

    Article  CAS  PubMed  Google Scholar 

  67. Choi JS, Kim BS, Kim JD, Choi YC, Lee HY, Cho YW (2012) In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells. Tissue Eng Part A 18(1–2):80–92

    Article  CAS  PubMed  Google Scholar 

  68. Ghuman H, Massensini AR, Donnelly J et al (2016) ECM hydrogel for the treatment of stroke: characterization of the host cell infiltrate. Biomaterials 91:166–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beck EC, Barragan M, Libeer TB et al (2016) Chondroinduction from naturally derived cartilage matrix: a comparison between devitalized and decellularized cartilage encapsulated in hydrogel pastes. Tissue Eng Part A 22(7–8):665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao Y, Fan J, Bai S (2019) Biocompatibility of injectable hydrogel from decellularized human adipose tissue in vitro and in vivo. J Biomed Mater Res B Appl Biomater 107(5):1684–1694

    Article  CAS  PubMed  Google Scholar 

  71. Shin J, Kang EH, Choi S et al (2021) Tissue-adhesive chondroitin sulfate hydrogel for cartilage reconstruction. ACS Biomater Sci Eng 7(9):4230–4243

    Article  CAS  PubMed  Google Scholar 

  72. Shridhar A, Amsden BG, Gillies ER, Flynn LE (2019) Investigating the effects of tissue-specific extracellular matrix on the adipogenic and osteogenic differentiation of human adipose-derived stromal cells within composite hydrogel scaffolds. Front Bioeng Biotechnol 7:402

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schemitsch EH (2017) Size matters: defining critical in bone defect size! J Orthopaedic Trauma 31(5):S20–S22

    Article  Google Scholar 

  74. Bernhard J, Ferguson J, Rieder B et al (2017) Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair. Biomaterials 139:202–212

    Article  CAS  PubMed  Google Scholar 

  75. Roseti L, Parisi V, Petretta M et al (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 78:1246–1262

    Article  CAS  PubMed  Google Scholar 

  76. Liu M, Lv Y (2018) Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model. Nanomaterials (Basel, Switzerland) 8(12):999

    Article  PubMed  Google Scholar 

  77. Ahn WB, Lee YB, Ji YH, Moon KS, Jang HS, Kang SW (2022) Decellularized human adipose tissue as an alternative graft material for bone regeneration. Tissue Eng Regen Med 19:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li T, Javed R, Ao Q (2021) Xenogeneic decellularized extracellular matrix-based biomaterials for peripheral nerve repair and regeneration. Curr Neuropharmacol 19(12):2152–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rao Z, Lin T, Qiu S, Zhou J, Liu S, Chen S, Wang T, Liu X, Zhu Q, Bai Y, Quan D (2021) Decellularized nerve matrix hydrogel scaffolds with longitudinally oriented and size-tunable microchannels for peripheral nerve regeneration. Mater Sci Eng:C 120:111791

    Article  CAS  Google Scholar 

  80. Wang J, Xiong H, Zhu T et al (2020) Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS Nano 14(10):12579–12595

    Article  CAS  PubMed  Google Scholar 

  81. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C (2022) Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater 10:15–31

    CAS  PubMed  Google Scholar 

  82. Gonzalez-Perez F, Udina E, Navarro X (2013) Extracellular matrix components in peripheral nerve regeneration. Int Rev Neurobiol 108:257–275

    Article  CAS  PubMed  Google Scholar 

  83. Gao X, Wang Y, Chen J, Peng J (2013) The role of peripheral nerve ECM components in the tissue engineering nerve construction. Rev Neurosci 24(4):443–453

    Article  CAS  PubMed  Google Scholar 

  84. Lin T, Liu S, Chen S et al (2018) Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 73:326–338

    Article  CAS  PubMed  Google Scholar 

  85. Lin G, Albersen M, Harraz AM et al (2011) Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells. Urology 77(6):1509.e1501–1508

    Article  Google Scholar 

  86. Li Y, Chen Z, Chen Y et al (2021) Repair of sciatic nerve defect in rats by adipose tissue decellularized matrix hydrogel. Chin J Microsurg 44(3):6

    Google Scholar 

  87. Wu X, Corona BT, Chen X, Walters TJ (2012) A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores Open Access 1(6):280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carnes ME, Pins GD (2020) Skeletal muscle tissue engineering: biomaterials-based strategies for the treatment of volumetric muscle loss. Bioengineering (Basel, Switzerland) 7(3):85

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Garg K, Ward CL, Corona BT (2014) Asynchronous inflammation and myogenic cell migration limit muscle tissue regeneration mediated by a cellular scaffolds. Inflamm Cell Signal 1(4):e530

    PubMed  Google Scholar 

  90. Badylak SF, Dziki JL, Sicari BM, Ambrosio F, Boninger ML (2016) Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials 103:128–136

    Article  CAS  PubMed  Google Scholar 

  91. Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF (2018) Current methods for skeletal muscle tissue repair and regeneration. Biomed Res Int 2018:1984879

    PubMed  PubMed Central  Google Scholar 

  92. Mase VJ Jr, Hsu JR, Wolf SE et al (2010) Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33(7):511

    Article  PubMed  Google Scholar 

  93. Dziki J, Badylak S, Yabroudi M et al (2016) An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen Med 1:16008

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sicari BM, Rubin JP, Dearth CL et al (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Trans Med 6(234):234ra258

    Article  Google Scholar 

  95. Aurora A, Roe JL, Corona BT, Walters TJ (2015) An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials 67:393–407

    Article  CAS  PubMed  Google Scholar 

  96. Greising SM, Rivera JC, Goldman SM, Watts A, Aguilar CA, Corona BT (2017) Unwavering pathobiology of volumetric muscle loss injury. Sci Rep 7(1):13179

    Article  PubMed  PubMed Central  Google Scholar 

  97. Garg K, Ward CL, Rathbone CR, Corona BT (2014) Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res 358(3):857–873

    Article  CAS  PubMed  Google Scholar 

  98. Chen XK, Walters TJ (2013) Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model. Journal Plast Reconstr Aesthet Surg JPRAS 66(12):1750–1758

    Article  PubMed  Google Scholar 

  99. Dussoyer M, Michopoulou A, Rousselle P (2020) Decellularized scaffolds for skin repair and regeneration. Appl Sci 10(10):3435

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Central Military Commission of the People's Republic of China Logistic Support Department (Grant Number 20QNPY097); National Natural Science Foundation of China (82102342); Natural Science Foundation of Hebei Province (H2020505007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julei Zhang or Yan Han.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest with any financial organizations or companies regarding the material discussed in the manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Yao, W., Tao, R. et al. Application of Decellularized Adipose Matrix as a Bioscaffold in Different Tissue Engineering. Aesth Plast Surg 48, 1045–1053 (2024). https://doi.org/10.1007/s00266-023-03608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-023-03608-4

Keywords

Navigation