Skip to main content

Advertisement

Log in

Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Volumetric muscle loss (VML) is a traumatic and functionally debilitating muscle injury with limited treatment options. Developmental regenerative therapies for the repair of VML typically comprise an ECM scaffold. In this study, we tested if the complete reliance on host cell migration to a devitalized muscle scaffold without myogenic cells is sufficient for de novo muscle fiber regeneration. Devitalized (muscle ECM with no living cells) and, as a positive control, vital minced muscle grafts were transplanted to a VML defect in the tibialis anterior muscle of Lewis rats. Eight weeks post-injury, devitalized grafts did not appreciably promote de novo muscle fiber regeneration within the defect area, and instead remodeled into a fibrotic tissue mass. In contrast, transplantation of vital minced muscle grafts promoted de novo muscle fiber regeneration. Notably, pax7+ cells were absent in remote regions of the defect site repaired with devitalized scaffolds. At 2 weeks post-injury, the devitalized grafts were unable to promote an anti-inflammatory phenotype, while vital grafts appeared to progress to a pro-regenerative inflammatory response. The putative macrophage phenotypes observed in vivo were supported in vitro, in which soluble factors released from vital grafts promoted an M2-like macrophage polarization, whereas devitalized grafts failed to do so. These observations indicate that although the remaining muscle mass serves as a source of myogenic cells in close proximity to the defect site, a devitalized scaffold without myogenic cells is inadequate to appreciably promote de novo muscle fiber regeneration throughout the VML defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal H, Tholpady SS, Capito AE, Drake DB, Katz AJ (2012) Macrophage phenotypes correspond with remodeling outcomes of various acellular dermal matrices. Open Access J Regen Med 1:51–59

    Article  CAS  Google Scholar 

  • Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  • Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30:1482–1491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8:978–987

    Article  CAS  PubMed  Google Scholar 

  • Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9:1520–1527

    Article  CAS  PubMed  Google Scholar 

  • Carlson BM (1968) Regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. J Morphol 125:447–472

    Article  CAS  PubMed  Google Scholar 

  • Chen XK, Walters TJ (2013) Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model. J Plast Reconstr Aesthet Surg 66(12):1750–1758

    Article  PubMed  Google Scholar 

  • Chen SE, Gerken E, Zhang Y, Zhan M, Mohan RK, Li AS, Reid MB, Li YP (2005) Role of TNF-{alpha} signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol Cell Physiol 289:C1179–C1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic Mech Clin Implications Curr Pharm Des 16:906–914

    CAS  Google Scholar 

  • Corona BT, Machingal MA, Criswell T, Vadhavkar M, Dannahower AC, Bergman C, Zhao W, Christ GJ (2012) Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng Part A 18:1213–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corona BT, Wu X, Ward CL, McDaniel JS, Rathbone CR, Walters TJ (2013a) The promotion of a functional fibrosis in skeletal muscle with volumetric muscle loss injury following the transplantation of muscle-ECM. Biomaterials 343:3324–3335

  • Corona BT, Ward CL, Baker HB, Walters TJ, Christ GJ (2013b) Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 20:705–715

    PubMed  Google Scholar 

  • Corona BT, Garg K, Ward CL, McDaniel JS, Walters TJ, Rathbone CR (2013c) Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am J Physiol Cell Physiol 305:C761–775

    Article  CAS  PubMed  Google Scholar 

  • Corso P, Finkelstein E, Miller T, Fiebelkorn I, Zaloshnja E (2006) Incidence and lifetime costs of injuries in the United States. Inj Prev J Int Soc Child Adolesc Inj Prev 12:212–218

    Article  CAS  Google Scholar 

  • Gamba PG, Conconi MT, Lo Piccolo R, Zara G, Spinazzi R, Parnigotto PP (2002) Experimental abdominal wall defect repaired with acellular matrix. Pediatr Surg Int 18:327–331

    Article  CAS  PubMed  Google Scholar 

  • Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL (2013) Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials 34:4439–4451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghins E, Colson-van Schoor M, Marechal G (1984) The origin of muscle stem cells in rat triceps surae regenerating after mincing. J Muscle Res Cell Motil 5:711–722

    Article  CAS  PubMed  Google Scholar 

  • Ghins E, Colson-Van Schoor M, Maldague P, Marechal G (1985) Muscle regeneration induced by cells autografted in adult rats. Arch Int Physiol Biochim 93:143–153

    Article  CAS  PubMed  Google Scholar 

  • Ghins E, Colson-Van Schoor M, Marechal G (1986) Implantation of autologous cells in minced and devitalized rat skeletal muscles. J Muscle Res Cell Motil 7:151–159

    Article  CAS  PubMed  Google Scholar 

  • Grogan BF, Hsu JR (2011) Volumetric muscle loss. J Am Acad Orthop Surg 19(Suppl 1):S35–37

    PubMed  Google Scholar 

  • Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huijing PA, Jaspers RT (2005) Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand J Med Sci Sports 15:349–380

    Article  CAS  PubMed  Google Scholar 

  • Keane TJ, Badylak SF (2014) The host response to allogeneic and xenogeneic biological scaffold materials. J Tissue Eng Regen Med Feb 14 [Epub ahead of print]

  • Kou PM, Babensee JE (2010) Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A 96:239–260

    PubMed  Google Scholar 

  • Kowal K, Silver R, Slawinska E, Bielecki M, Chyczewski L, Kowal-Bielecka O (2011) CD163 and its role in inflammation. Folia Histochem Cytobiol 49:365–374

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Pereira CA, Abdulla D, Naimark WA, Crawford I (1995) A multi-sample denaturation temperature tester for collagenous biomaterials. Med Eng Phys 17:115–121

    Article  CAS  PubMed  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li YP (2003) TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285:C370–376

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Joyce EM, Sacks MS (2008) Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29:1065–1074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu H, Hoshiba T, Kawazoe N, Chen G (2011) Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 32:2489–2499

    Article  CAS  PubMed  Google Scholar 

  • Machingal MA, Corona BT, Walters TJ, Kesireddy V, Koval CN, Dannahower A, Zhao W, Yoo JJ, Christ GJ (2011) A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng Part A 17:2291–2303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mase VJ Jr, Hsu JR, Wolf SE, Wenke JC, Baer DG, Owens J, Badylak SF, Walters TJ (2010) Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33:511

    PubMed  Google Scholar 

  • Merritt EK, Hammers DW, Tierney M, Suggs LJ, Walters TJ, Farrar RP (2010a) Functional assessment of skeletal muscle regeneration utilizing homologous extracellular matrix as scaffolding. Tissue Eng Part A 16:1395–1405

    Article  CAS  PubMed  Google Scholar 

  • Merritt EK, Cannon MV, Hammers DW, Le LN, Gokhale R, Sarathy A, Song TJ, Tierney MT, Suggs LJ, Walters TJ, Farrar RP (2010b) Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng Part A 16:2871–2881

    Article  CAS  PubMed  Google Scholar 

  • Miles CA, Ghelashvili M (1999) Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 76:3243–3252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moestrup SK, Moller HJ (2004) CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med 36:347–354

    Article  CAS  PubMed  Google Scholar 

  • Morgan JE, Coulton GR, Partridge TA (1987) Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil 8:386–396

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  CAS  PubMed  Google Scholar 

  • Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347–5354

    CAS  PubMed  Google Scholar 

  • Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M (1999) Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163:3771–3777

    CAS  PubMed  Google Scholar 

  • Murphy K, Paul T, Walport M (2008) Janeway’s immunobiology. Garland Science, Taylor and Francis Group, LLC

  • Nair MG, Gallagher IJ, Taylor MD, Loke P, Coulson PS, Wilson RA, Maizels RM, Allen JE (2005) Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun 73:385–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK (2007) Delayed angiogenesis and VEGF production in CCR2−/− mice during impaired skeletal muscle regeneration. Am J Physiol Regul Integr Comp Physiol 293:R651–R661

    Article  CAS  PubMed  Google Scholar 

  • Owens BD, Kragh JF Jr, Macaitis J, Svoboda SJ, Wenke JC (2007) Characterization of extremity wounds in operation iraqi freedom and operation enduring freedom. J Orthop Trauma 21:254–257

    Article  PubMed  Google Scholar 

  • Owens BD, Kragh JF Jr, Wenke JC, Macaitis J, Wade CE, Holcomb JB (2008) Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J Trauma 64:295–299

  • Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852

    Article  CAS  PubMed  Google Scholar 

  • Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh Gh G (2002a) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71:597–602

    CAS  PubMed  Google Scholar 

  • Raes G, Noel W, Beschin A, Brys L, de Baetselier P, Hassanzadeh GH (2002b) FIZZ1 and Ym as tools to discriminate between differentially activated macrophages. Dev Immunol 9:151–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi CA, Flaibani M, Blaauw B, Pozzobon M, Figallo E, Reggiani C, Vitiello L, Elvassore N, De Coppi P (2011) In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. FASEB J 25:2296–2304

    Article  CAS  PubMed  Google Scholar 

  • Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ, Wahlers T, Stock UA (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143:201–208

    Article  CAS  PubMed  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    Article  CAS  PubMed  Google Scholar 

  • Schultz E, Jaryszak DL, Gibson MC, Albright DJ (1986) Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J Muscle Res Cell Motil 7:361–367

    Article  CAS  PubMed  Google Scholar 

  • Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP, Christman KL (2010) Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng Part A 16:2017–2027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M, Turner NJ, Weber DJ, Simpson TW, Wyse A, Brown EHP, Dziki JL, Fisher LE, Brown S, Badylak SF (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Science Transl Med 6:234ra58

  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkotter C, Scharffetter-Kochanek K (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snow MH (1973) Metabolic activity during the degenerative and early regenerative stages of minced skeletal muscle. Anat Rec 176:185–203

    Article  CAS  PubMed  Google Scholar 

  • Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488

    Article  CAS  PubMed  Google Scholar 

  • Studitsky AN (1964) Free auto- and homografts of muscle tissue in experiments on animals. Ann N Y Acad Sci 120:789–801

    Article  CAS  PubMed  Google Scholar 

  • Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578:327–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torrente Y, Tremblay JP, Pisati F, Belicchi M, Rossi B, Sironi M, Fortunato F, El Fahime M, D’Angelo MG, Caron NJ, Constantin G, Paulin D, Scarlato G, Bresolin N (2001) Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152:335–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torrente Y, El Fahime E, Caron NJ, Del Bo R, Belicchi M, Pisati F, Tremblay JP, Bresolin N (2003) Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. Cell Transplant 12:91–100

    Article  CAS  PubMed  Google Scholar 

  • Turner NJ, Yates AJ Jr, Weber DJ, Qureshi IR, Stolz DB, Gilbert TW, Badylak SF (2010) Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng Part A 16:3309–3317

    Article  CAS  PubMed  Google Scholar 

  • Turner NJ, Badylak JS, Weber DJ, Badylak SF (2012) Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J Surg Res 176:490–502

    Article  CAS  PubMed  Google Scholar 

  • Valentin JE, Turner NJ, Gilbert TW, Badylak SF (2010) Functional skeletal muscle formation with a biologic scaffold. Biomaterials 31:7475–7484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Gorp H, Delputte PL, Nauwynck HJ (2010) Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol 47:1650–1660

    Article  PubMed  Google Scholar 

  • Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA, 3rd Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196

    Article  PubMed  Google Scholar 

  • Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor alpha in traumatic muscle injury. FASEB J 16:1630–1632

    CAS  PubMed  Google Scholar 

  • Warren GL, Hulderman T, Mishra D, Gao X, Millecchia L, O’Farrell L, Kuziel WA, Simeonova PP (2005) Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J 19:413–415

    CAS  PubMed  Google Scholar 

  • Williams C, Liao J, Joyce EM, Wang B, Leach JB, Sacks MS, Wong JY (2009) Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater 5:993–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33:2916–2925

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Corona BT, Chen X, Walters TJ (2012a) A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores Open Access 1:280–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem Off J Histochem Soc 54:1177–1191

    Article  CAS  Google Scholar 

  • Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048

    CAS  PubMed  Google Scholar 

  • Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73B:61–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Janet Roe for her technical assistance. These studies were funded by the Combat Casualty Care Research Program, Medical Research and Materiel Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin T. Corona.

Additional information

Disclaimer

The opinions or assertions contained herein are the private views of the author, and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 13049 kb)

ESM 2

(TIFF 16544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, K., Ward, C.L., Rathbone, C.R. et al. Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res 358, 857–873 (2014). https://doi.org/10.1007/s00441-014-2006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2006-6

Keywords

Navigation