Skip to main content

Advertisement

Log in

Adipose Tissue-derived Stem cells in Plastic and Reconstructive Surgery: A Bibliometric Study

  • Review
  • Non-Surgical Aesthetic
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2024

This article has been updated

Abstract

Background

Due to the evolving nature of the applications of adipose tissue-derived stem cells (ADSCs) and the rapidly growing body of scientific literature, it is difficult to generate a manual compilation and systematic review of ADSCs in plastic and reconstructive surgery.

Methods

Bibliographic records were retrieved from the Web of Science Core Collection and analyzed with CiteSpace.

Results

We retrieved 691 publications and their references. We identified 52 research categories. Interdisciplinary studies were common. The journals clustered into 13 subnetworks. The top institutions were Stanford University; University of Pittsburgh; University of Tokyo; University of California, Los Angeles; University of California, Davis; New York University; Tulane University; and University of Michigan. National Institutes of Health and National Natural Science Foundation of China provided the most generous financial support. Studies clustered into 22 topics. Emerging trends may include improvement of fat grafting, and application of ADSCs in wound healing, scleroderma, and facial rejuvenation.

Conclusion

The present study provides a panoramic view of ADSCs in plastic and reconstructive surgery. Analysis of journals, institutions, and grants could help researchers in different ways. Researchers may consider the emerging trends when deciding the direction of their study.

Level of Evidence III

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Xiong B-J, Tan Q-W, Chen Y-J et al (2018) The effects of platelet-rich plasma and adipose-derived stem cells on neovascularization and fat graft survival. Aesthetic Plast Surg 42(1):1–8. https://doi.org/10.1007/s00266-017-1062-1

    Article  PubMed  Google Scholar 

  2. Harris WM, Plastini M, Kappy N et al (2019) Endothelial differentiated adipose-derived stem cells improvement of survival and neovascularization in fat transplantation. Aesthetic Surg J 39(2):220–232. https://doi.org/10.1093/asj/sjy130

    Article  Google Scholar 

  3. Deng J, Shi Y, Gao Z et al (2018) Inhibition of pathological phenotype of hypertrophic scar fibroblasts via coculture with adipose-derived stem cells. Tissue Eng Part A 24(5–6):382–393. https://doi.org/10.1089/ten.tea.2016.0550

    Article  CAS  PubMed  Google Scholar 

  4. Hsu M-F, Yu S-H, Chuang S-J et al (2018) Can mesenchymal stem cell lysate reverse aging? Aging (Albany NY) 10(10):2900–2910. https://doi.org/10.18632/aging.101595

    Article  CAS  PubMed  Google Scholar 

  5. Ullah M, Sun Z (2018) Stem cells and anti-aging genes: double-edged sword—do the same job of life extension. Stem Cell Res Ther 9(1):3. https://doi.org/10.1186/s13287-017-0746-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toyserkani NM, Christensen ML, Sheikh SP, Sørensen JA (2015) Adipose-derived stem cells: new treatment for wound healing? Ann Plast Surg 75(1):117–123. https://doi.org/10.1097/SAP.0000000000000083

    Article  CAS  PubMed  Google Scholar 

  7. McCarthy ME, Brown TA, Bukowska J et al (2018) Therapeutic applications for adipose-derived stem cells in wound healing and tissue engineering. Curr Stem Cell Rep 4(2):127–137. https://doi.org/10.1007/s40778-018-0125-9

    Article  CAS  Google Scholar 

  8. Di Summa PG, Schiraldi L, Cherubino M et al (2018) Adipose derived stem cells reduce fibrosis and promote nerve regeneration in rats. Anat Rec 301(10):1714–1721. https://doi.org/10.1002/ar.23841

    Article  CAS  Google Scholar 

  9. Zarei F, Negahdari B (2017) Recent progresses in plastic surgery using adipose-derived stem cells, biomaterials and growth factors. J Microencapsul 34(7):699–706. https://doi.org/10.1080/02652048.2017.1370027

    Article  CAS  PubMed  Google Scholar 

  10. Kim Y-J, Jeong J-H (2014) Clinical application of adipose stem cells in plastic surgery. J Korean Med Sci 29(4):462. https://doi.org/10.3346/jkms.2014.29.4.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banyard DA, Salibian AA, Widgerow AD, Evans GRD (2015) Implications for human adipose-derived stem cells in plastic surgery. J Cell Mol Med 19(1):21–30. https://doi.org/10.1111/jcmm.12425

    Article  PubMed  Google Scholar 

  12. Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F (2011) Science mapping software tools: review, analysis, and cooperative study among tools. J Am Soc Inf Sci Technol 62(7):1382–1402. https://doi.org/10.1002/asi.21525

    Article  Google Scholar 

  13. Pan X, Yan E, Cui M, Hua W (2018) Examining the usage, citation, and diffusion patterns of bibliometric mapping software: a comparative study of three tools. J Informetr 12(2):481–493. https://doi.org/10.1016/j.joi.2018.03.005

    Article  Google Scholar 

  14. Chen C, Dubin R, Kim MC (2014) Orphan drugs and rare diseases: a scientometric review (2000–2014). Expert Opin Orphan Drugs 2(7):709–724. https://doi.org/10.1517/21678707.2014.920251

    Article  Google Scholar 

  15. Jehangir S, Barnes EH, McDowell D, Holland AJA (2019) Publishing trends in journal of paediatric surgery, pediatric surgery international and European journal of pediatric surgery over the past three decades. Pediatr Surg Int 35(4):413–418. https://doi.org/10.1007/s00383-019-04445-w

    Article  PubMed  Google Scholar 

  16. Baek S, Yoon DY, Lim KJ, Cho YK, Seo YL, Yun EJ (2018) The most downloaded and most cited articles in radiology journals: a comparative bibliometric analysis. Eur Radiol 28(11):4832–4838. https://doi.org/10.1007/s00330-018-5423-1

    Article  PubMed  Google Scholar 

  17. Gutiérrez-Salcedo M, Martínez MÁ, Moral-Munoz JA, Herrera-Viedma E, Cobo MJ (2018) Some bibliometric procedures for analyzing and evaluating research fields. Appl Intell. 48(5):1275–1287. https://doi.org/10.1007/s10489-017-1105-y

    Article  Google Scholar 

  18. Liu Z, Yin Y, Liu W, Dunford M (2015) Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics 103(1):135–158. https://doi.org/10.1007/s11192-014-1517-y

    Article  Google Scholar 

  19. Muslu Ü (2018) The evolution of breast reduction publications: a bibliometric analysis. Aesthetic Plast Surg 42(3):679–691. https://doi.org/10.1007/s00266-018-1080-7

    Article  PubMed  Google Scholar 

  20. Lalezari S, Daar DA, Mathew PJ, Mowlds DS, Paydar KZ, Wirth GA (2018) Trends in rhinoplasty research: a 20-Year bibliometric analysis. Aesthetic Plast Surg 42(4):1071–1084. https://doi.org/10.1007/s00266-018-1130-1

    Article  PubMed  Google Scholar 

  21. Trevatt AEJ, Thomson DR, Miller R, Colquhoun M, Idowu AI, Rahman S (2019) A comparison of the academic impact of plastic surgery units in the United Kingdom and Ireland using bibliometric analysis. J Plast Surg Hand Surg 53(2):97–104. https://doi.org/10.1080/2000656X.2018.1556669

    Article  PubMed  Google Scholar 

  22. Ruan QZ, Cohen JB, Baek Y et al (2018) Does industry funding mean more publications for subspecialty academic plastic surgeons? J Surg Res 224:185–192. https://doi.org/10.1016/j.jss.2017.12.025

    Article  PubMed  Google Scholar 

  23. Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57(3):359–377. https://doi.org/10.1002/asi.20317

    Article  Google Scholar 

  24. Chen C, Hu Z, Liu S, Tseng H (2012) Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther 12(5):593–608. https://doi.org/10.1517/14712598.2012.674507

    Article  CAS  PubMed  Google Scholar 

  25. Schvaneveldt RW, Durso FT, Dearholt DW (1989) Network structures in proximity data. Psychol Learn Motiv 24:249–284. https://doi.org/10.1016/S0079-7421(08)60539-3

    Article  Google Scholar 

  26. Rigotti G, Marchi A, Galiè M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422. https://doi.org/10.1097/01.prs.0000256047.47909.71

    Article  CAS  PubMed  Google Scholar 

  27. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32(1):48–55. https://doi.org/10.1007/s00266-007-9019-4

    Article  PubMed  Google Scholar 

  28. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(3 SUPPL.):108S–120S. https://doi.org/10.1097/01.prs.0000234610.81672.e7

    Article  CAS  PubMed  Google Scholar 

  29. Atef A, Shaker AAEM, Sadek EY, Boughdadi NS, Atalla SS, Abu Zahra F (2018) The optimal timing of adipose derived stem cells injection to improve skin flap survival in a rat model. Eur J Plast Surg 41(4):387–394. https://doi.org/10.1007/s00238-018-1400-9

    Article  Google Scholar 

  30. Yang Y, Qu R, Fan T et al (2018) Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells. Stem Cell Res Ther 9(1):125. https://doi.org/10.1186/s13287-018-0836-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho KH, Uthaman S, Park IK, Cho CS (2018) Injectable biomaterials in plastic and reconstructive surgery: a Review of the Current Status. Tissue Eng Regen Med 15(5):559–574. https://doi.org/10.1007/s13770-018-0158-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Gast H, Torrensma B, Fitzgerald E, Stevens H (2016) The treatment of chronic neuropathic pain: bio (regenerative) pain treatment through lipofilling. A short communication case series. Pain Physician 19(3):E495–E498

    Article  PubMed  Google Scholar 

  33. Ichim TE, Harman RJ, Min WP et al (2010) Autologous stromal vascular fraction cells: a tool for facilitating tolerance in rheumatic disease. Cell Immunol 264(1):7–17. https://doi.org/10.1016/j.cellimm.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  34. Tabit CJ, Slack GC, Fan K, Wan DC, Bradley JP (2012) Fat grafting versus adipose-derived stem cell therapy: distinguishing indications, techniques, and outcomes. Aesthetic Plast Surg 36(3):704–713. https://doi.org/10.1007/s00266-011-9835-4

    Article  PubMed  Google Scholar 

  35. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60:538–544. https://doi.org/10.1097/sap.0b013e3181723bbe

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shin H, Perdue RR (2018) Self-service technology research: a bibliometric co-citation visualization analysis. Int J Hosp Manag 2019(80):101–112. https://doi.org/10.1016/j.ijhm.2019.01.012

    Article  Google Scholar 

  37. He Y, Lu F (2016) Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int. https://doi.org/10.1155/2016/5786257

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cai J, Li B, Wang J et al (2017) tamoxifen prefabricated beige adipose tissue improves fat graft survival in Mice. Plast Reconstr Surg 141(4):1. https://doi.org/10.1097/PRS.0000000000004220

    Article  CAS  Google Scholar 

  39. Levi B, Nelson ER, Hyun JS et al (2012) Enhancement of human adipose-derived stromal cell angiogenesis through knockdown of a BMP-2 inhibitor. Plast Reconstr Surg 129(1):53–66. https://doi.org/10.1097/PRS.0b013e3182361ff5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu I, Nahas Z, Kimmerling KA, Rosson GD, Elisseeff JH (2012) An injectable adipose matrix for soft-tissue reconstruction. Plast Reconstr Surg 129(6):1247–1257. https://doi.org/10.1097/PRS.0b013e31824ec3dc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  42. Lee JA, Parrett BM, Conejero JA et al (2003) Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg 50(6):610–617. https://doi.org/10.1097/01.SAP.0000069069.23266.35

    Article  PubMed  Google Scholar 

  43. Cowan CM, Shi Y-Y, Aalami OO et al (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22(5):560–567. https://doi.org/10.1038/nbt958

    Article  CAS  PubMed  Google Scholar 

  44. Dragoo JL, Choi JY, Lieberman JR et al (2003) Bone induction byBMP-2 transduced stem cells derived from human fat. J Orthop Res 21(4):622–629. https://doi.org/10.1016/S0736-0266(02)00238-3

    Article  CAS  PubMed  Google Scholar 

  45. Gentile P, De Angelis B, Pasin M et al (2014) Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg 25(1):267–272. https://doi.org/10.1097/01.scs.0000436746.21031.ba

    Article  PubMed  Google Scholar 

  46. Coleman SR, Katzel EB (2015) Fat grafting for facial filling and regeneration. Clin Plast Surg 42(3):289–300. https://doi.org/10.1016/j.cps.2015.04.001

    Article  PubMed  Google Scholar 

  47. Cleveland EC, Albano NJ, Hazen A (2015) Roll, spin, wash, or filter? Processing of lipoaspirate for autologous fat grafting: an updated, evidence-based review of the literature. Plast Reconstr Surg 136(4):706–713. https://doi.org/10.1097/PRS.0000000000001581

    Article  CAS  PubMed  Google Scholar 

  48. Pu LLQ (2012) Towards more rationalized approach to autologous fat grafting. J Plast Reconstr Aesthetic Surg 65(4):413–419. https://doi.org/10.1016/j.bjps.2011.09.033

    Article  Google Scholar 

  49. Li F, Guo W, Li K et al (2015) Improved fat graft survi val by different volume fractions of platelet-rich plasma and adipose-derived stem cells. Aesthetic Surg J 35(3):319–333. https://doi.org/10.1093/asj/sju046

    Article  CAS  Google Scholar 

  50. Cervelli V, Gentile P, De Angelis B et al (2011) Application of enhanced stromal vascular fraction and fat grafting mixed with PRP in post-traumatic lower extremity ulcers. Stem Cell Res 6(2):103–111. https://doi.org/10.1016/j.scr.2010.11.003

    Article  PubMed  Google Scholar 

  51. Raposio E, Bertozzi N, Bonomini S et al (2016) Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds a Compend Clin Res Pract 28(4):126–131

    Google Scholar 

  52. Hassan WU, Greiser U, Wang W (2014) Role of adipose-derived stem cells in wound healing. Wound Repair Regen 22(3):313–325. https://doi.org/10.1111/wrr.12173

    Article  PubMed  Google Scholar 

  53. Magalon G, Daumas A, Sautereau N, Magalon J, Sabatier F, Granel B (2015) Regenerative Approach to Scleroderma with Fat Grafting. Clin Plast Surg 42(3):353–364. https://doi.org/10.1016/j.cps.2015.03.009

    Article  PubMed  Google Scholar 

  54. Rigotti G, Charles-De-Sá L, Gontijo-De-Amorim NF et al (2016) Expanded stem cells, Stromal-vascular fraction, and platelet-rich plasma enriched fat: comparing results of different facial rejuvenation approaches in a clinical trial. Aesthetic Surg J 36(3):261–270. https://doi.org/10.1093/asj/sjv231

    Article  Google Scholar 

  55. Salgado AJBOG, Reis RLG, Sousa NJC, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5(2):103–110

    Article  CAS  PubMed  Google Scholar 

  56. Khouri RK, Smit JM, Cardoso E et al (2013) Percutaneous aponeurotomy and lipofilling: a regenerative alternative to flap reconstruction? Plast Reconstr Surg 132(5):1280–1290. https://doi.org/10.1097/PRS.0b013e3182a4c3a9

    Article  CAS  PubMed  Google Scholar 

  57. Borovikova AA, Ziegler ME, Banyard DA et al (2018) Adipose-derived tissue in the treatment of dermal fibrosis: antifibrotic effects of adipose-derived stem cells. Ann Plast Surg 80(3):297–307. https://doi.org/10.1097/SAP.0000000000001278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Team Construction Foundation of Henan Province (TD2011010).

Author information

Authors and Affiliations

Authors

Contributions

GSL and LBL designed this study; WHL and KS analyzed and interpreted the data, and were major contributors in writing the manuscript. XRZ, HYZ, HZ and AJ analyzed and interpreted the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guangshuai Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenhui Liu and Ke Shi are co-first authors of this article.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Shi, K., Zhu, X. et al. Adipose Tissue-derived Stem cells in Plastic and Reconstructive Surgery: A Bibliometric Study. Aesth Plast Surg 45, 679–689 (2021). https://doi.org/10.1007/s00266-020-01615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-020-01615-3

Keywords

Navigation