Skip to main content
Log in

Reproduction of a field cricket under high-intensity artificial light at night and a simulated heat wave

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Animals are increasingly exposed to both artificial light at night (ALAN; a.k.a., ecological light pollution) and heat waves. Traditionally, the effects of ALAN and heat waves have been investigated in isolation, and results indicate mixed support for their costs to important decisions made at specific stages of reproduction (i.e., before, during, and after mating). Therefore, we used a factorial design to manipulate temperature and light conditions during adulthood in female variable field crickets (Gryllus lineaticeps) to determine (1) whether ALAN has stage-specific effects on reproductive decisions and (2) if ALAN effects on reproduction interact with a simulated heat wave. We found that ALAN simulating bright urban lighting promoted mating success, and a simulated heat wave resulted in even greater benefits to reproduction, including increased reproductive investment (ovary mass prior to mating), the efficiency by which food was converted into reproductive tissue, and reproductive output (number of eggs laid). Heat wave and ALAN did not modulate the effect of one another because we found no evidence of interactive (e.g., synergistic or antagonistic) effects of temperature and light treatments on any reproductive trait. Our study is the first to examine the combined effects of ALAN and heat waves across reproductive stages, and we found that these two increasingly common environmental factors may generally benefit reproduction in an insect.

Significance statement

Animals are increasingly exposed to artificial light at night (a.k.a., ecological light pollution) and heat waves, but the combined effects of these two potential stressors are unknown. Therefore, we manipulated temperature and light conditions during adulthood in female variable field crickets (Gryllus lineaticeps) to examine effects across three important reproductive stages—before, during, and after mating. We found that ALAN simulating bright urban lighting promoted mating success, and a simulated heat wave resulted in even greater benefits to reproduction, including increased reproductive investment (ovary mass prior to mating) and reproductive output (number of eggs laid after mating). Our results indicate that these two increasingly common environmental factors may generally benefit reproduction in an insect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data are included in a file of supplemental material.

References

  • Adamo SA, Lovett MME (2011) Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Biol 214(12):1997–2004

    Article  PubMed  Google Scholar 

  • Adamo SA, Baker JL, Lovett MME, Wilson G (2012) Climate change and temperate zone insects: the tyranny of thermodynamics meets the world of limited resources. Environ Entomol 41(6):1644–1652

    Article  PubMed  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Atwell A, Wagner WE (2015) Along came a spider who sat down beside her: Perceived predation risk, but not female age, affects female mate choosiness. Behav Processes 115:143–148

    Article  PubMed  Google Scholar 

  • Aulsebrook AE, Lesku JA, Mulder RA, Goymann W, Vyssotsk AL, Jones TM (2020) Streetlights disrupt night-time sleep in urban black swans. Front Ecol Evol 8:131

    Article  Google Scholar 

  • Borniger JC, Maurya SK, Periasamy M, Nelson RJ (2014) Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol Int 31(8):917–925

    Article  CAS  PubMed  Google Scholar 

  • Botha LM, Jones TM, Hopkins GR (2017) Effects of lifetime exposure to artificial light at night on cricket (Teleogryllus commodus) courtship and mating behaviour. Anim Behav 129:181–188

    Article  Google Scholar 

  • Cade WH, Wyatt DR (1984) Factors affecting calling behaviour in field crickets, Teleogryllus and Gryllus (age, weight, density, and parasites). Behaviour 88:61–75

    Article  Google Scholar 

  • Cahaner A, Leenstra F (1992) Effects of high temperature on growth and efficiency of male and female broilers from lines selected for high weight gain, favorable feed conversion, and high or low fat content. Poult 71:1237–1250

    Article  CAS  Google Scholar 

  • Casasole G, Raap T, Costantini D, AbdElgawad H, Asard H, Pinxten R, Eens M (2017) Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds. Comp Biochem Physiol A 210:14–21

    Article  CAS  Google Scholar 

  • Chen Q, Yang X, You D, Luo J, Hu X, Xu Z, Xiao W (2021) Dim red light during scotophase enhances mating of a moth through increased male antennal sensitivity against the female sex pheromone. Front Genet 12:611476. https://doi.org/10.3389/fgene.2021.611476

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315

    Article  PubMed  Google Scholar 

  • Crnokrak P, Roff DA (2002) Trade-offs to flight capability in Gryllus firmus: the influence of whole-organism respiration rate on fitness. J Evol Biol 15(3):388–398

    Article  Google Scholar 

  • Crump MC, Brown C, Griffin-Nolan RJ, Angeloni L, Lemoine NP, Seymoure BM (2021) Effects of low-level artificial light at night on Kentucky bluegrass and an introduced herbivore. Front Ecol Evol 9:612

    Article  Google Scholar 

  • Desouhant E, Gomes E, Mondy N, Amat I (2019) Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol Exp Appl 167(1):37–58

    Article  Google Scholar 

  • Dominoni DM, Halfwerk W, Baird E, Buxton RT, Fernández-Juricic E, Fristrup KM, McKenna MF, Mennitt DJ, Perkin EK, Seymoure BM, Stoner DC (2020) Why conservation biology can benefit from sensory ecology. Nat Ecol Evol 4:502–511. https://doi.org/10.1038/s41559-020-1135-4

    Article  PubMed  Google Scholar 

  • Dosio A, Mentaschi L, Fischer EM, Wyser K (2018) Extreme heat waves under 1.5°C and 2°C global warming. Environ Res Lett 13(5):054006

  • Durrant J, Botha LM, Green MP, Jones TM (2018) Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus. J Exp Zool Part B Mol Dev Evol 330(4):225–233

    Article  Google Scholar 

  • Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, Portnov BA, Rybnikova NA, Furgoni R (2016) The new world atlas of artificial night sky brightness. Sci Adv 2(6):e1600377. https://doi.org/10.1126/sciadv.1600377

  • Folt CL, Chen CY, Moore MV, Burnaford J (1999) Synergism and antagonism among multiple stressors. Limnol Oceanogr. 44(3 II):864–77

  • Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA 107(43):18664–18669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26(6):285–291

    Article  PubMed  Google Scholar 

  • Gaston KJ, Visser ME, Hölker F (2015) The biological impacts of artificial light at night: the research challenge. Philos Trans R Soc B Biol Sci. 370(1667)

  • Gieswein A, Hering D, Feld CK (2017) Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed. Sci Total Environ 593–594:27–35

    Article  PubMed  CAS  Google Scholar 

  • Glass JR, Stahlschmidt ZR (2019) Should I stay or should I go? complex environments influence the developmental plasticity of flight capacity and flight-related trade-offs. Biol J Linn Soc 128(1):59–69

    Article  Google Scholar 

  • Gobler CJ, Merlo LR, Morrell BK, Griffith AW (2018) Temperature, acidification, and food supply interact to negatively affect the growth and survival of the forage fish, Menidia beryllina (inland silverside), and Cyprinodon variegatus (sheepshead minnow). Front Mar Sci 5:86

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Handeland SO, Imsland AK, Stefansson SO (2008) The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283:36–42

    Article  Google Scholar 

  • Hedrick AV (2000) Crickets with extravagant mating songs compensate for predation risk with extra caution. Proc R Soc B Biol Sci 67(1444):671–675

    Article  Google Scholar 

  • Hedrick AV, Dill LM (1993) Mate choice by female crickets is influenced by predation risk. Anim Behav 46(1):193–196

    Article  Google Scholar 

  • Hölker F, Moss T, Griefahn B, Kloas W, Voigt CC, Henckel D, Hänel A, Kappeler PM, Völker S, Schwope A, Franke S, Uhrlandt D, Fischer J, Klenke R, Wolter C, Tockner K (2010) The dark side of light: A transdisciplinary research agenda for light pollution policy. Ecol Soc 15(4):13

  • Holliday DK, Elskus AA, Roosenburg WM (2009) Impacts of multiple stressors on growth and metabolic rate of malaclemys terrapin. Environ Toxicol Chem 28(2):338–345

    Article  CAS  PubMed  Google Scholar 

  • Holmstrup M, Bindesbøl AM, Oostingh GJ, Duschl A, Scheil V, Köhler HR, Loureiro S, Soares AM, Ferreira AL, Kienle C, Gerhardt A (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  PubMed  Google Scholar 

  • Hurley LL, McDiarmid CS, Friesen CR, Griffith SC, Rowe M (2018) Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc R Soc B Biol Sci 285(1871):20172547. https://doi.org/10.1098/rspb.2017.2547

  • IPCC (2021) Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte V, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu and B Zhou (eds.)]. Cambridge University Press

  • Jackson MC, Loewen CJG, Vinebrooke RD, Chimimba CT (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Global Change Biol 22(1):180–189

    Article  Google Scholar 

  • Jacot A, Scheuber H, Holzer B, Otti O, Brinkhof MWG (2008) Diel variation in a dynamic sexual display and its association with female mate-searching behaviour. Proc Royal Soc b 275(1634):579–585

    Article  Google Scholar 

  • Johnson JS (2018) Heat stress: impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. Ani Prod Sci 58(8):1404–1413

    Article  Google Scholar 

  • Kaunisto S, Ferguson LV, Sinclair BJ (2016) Can we predict the effects of multiple stressors on insects in a changing climate? Curr Opin Insect Sci 17:55–61

    Article  PubMed  Google Scholar 

  • Kelly CD, Tawes BR, Worthington AM (2014) Evaluating indices of body condition in two cricket species. Ecol Evol 4:4476–4487

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempenaers B, Borgström P, Loës P, Schlicht E, Valcu M (2010) Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr Biol 20(19):1735–1739

    Article  CAS  PubMed  Google Scholar 

  • Kraus LJ (2016) Human and environmental effects of light emitting diode (LED) community lighting. Action of the AMA House of Delegates 2016 Annual Meeting: Council on Science and Public Health Report 2-A-16

  • Kuehne LM, Olden JD, Duda JJ (2012) Costs of living for juvenile chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world. Can J Fish Aquatic Sci 69(10):1621–1630

    Article  CAS  Google Scholar 

  • Kurihara M (1996) Energy requirements and feed of dairy cows under high temperature conditions. Jpn Agric Res q 30(2):107–112

    Google Scholar 

  • Kyba CCM, Kuester T, De Miguel AS, Baugh K, Jechow A, Hölker F, Bennie J, Elvidge CD, Gaston KJ, Guanter L (2017) Artificially lit surface of earth at night increasing in radiance and extent. Sci Adv 3:e1701528

  • Leicht K, Jokela J, Seppälä O (2013) An experimental heat wave changes immune defense and life history traits in a freshwater snail. Ecol Evol 3(15):4861–4871

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy K, Wegrzyn Y, Ronny E, Anat B, Amir A (2021) Lifelong exposure to artificial light at night impacts stridulation and locomotion activity patterns in the cricket Gryllus bimaculatus. Proc R Soc B 288:20211626

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinet B, Zambra E, Przybyla K, Lecocq T, Anselmo A, Nonclercq D, Rasmont P, Michez D, Hennebert E (2021) Mating under climate change: impact of simulated heatwaves on the reproduction of model pollinators. Funct Ecol 35(3):739–752

    Article  Google Scholar 

  • McLay LK, Nagarajan-Radha V, Green MP, Jones TM (2018) Dim artificial light at night affects mating, reproductive output, and reactive oxygen species in Drosophila melanogaster. J Exp Zool Part A Ecol Integr Physiol 329(8–9):419–428

    Article  CAS  Google Scholar 

  • Nguyen K, Stahlschmidt ZR (2019) When to fight? Disentangling temperature and circadian effects on aggression and agonistic contests. Anim Behav 148:1–8

    Article  Google Scholar 

  • Nigussie T (2018) A review on the role of energy balance on reproduction of dairy cow. J Dairy Res Tech. 1:1–9. https://doi.org/10.24966/DRT-9315/100003.

  • Oke TR (1973) City size and the urban heat island. Atmos Environ 7(8):769–779

    Article  Google Scholar 

  • Owens ACS, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B (2020) Light pollution is a driver of insect declines. Biol Conserv 241:108259. https://doi.org/10.1016/j.biocon.2019.108259

  • Packard GC, Boardman TJ (1987) The misuse of ratios to scale physiological data that vary allometrically with body size. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New Directions in Ecological Physiology. Cambridge University Press, Cambridge, pp 216–236

    Google Scholar 

  • Padda SS, Stahlschmidt ZR (2022) Evaluating the effects of water and food limitation on the life history of an insect using a multiple-stressor framework. Oecologia 198(2):519–530. https://doi.org/10.1007/s00442-022-05115-w

    Article  PubMed  Google Scholar 

  • Padda SS, Glass JR, Stahlschmidt ZR (2021) When it’s hot and dry: Life-history strategy influences the effects of heat waves and water limitation. J Exp Biol. 224(7). jeb236398

  • Piggott JJ, Townsend CR, Matthaei CD (2015) Reconceptualizing synergism and antagonism among multiple stressors. Ecol Evol 5:1538–1547

    Article  PubMed  PubMed Central  Google Scholar 

  • Refsnider JM, Janzen FJ (2010) Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Ann Rev Ecol Evol Syst 41:39–57

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am Zool 31(1):243–251

    Article  Google Scholar 

  • Romo H, García-Barros E, Márquez AL, Moreno JC, Real R (2014) Effects of climate change on the distribution of ecologically interacting species: butterflies and their main food plants in spain. Ecography 37(11):1063–1072

    Google Scholar 

  • Romo H, Silvestre M, Munguira ML (2015) Potential distribution models and the effect of climatic change on the distribution of Phengaris nausithous considering its food plant and host ants. J Insect Conserv 19(6):1101–1118

    Article  Google Scholar 

  • Rost R, Honegger HW (1987) The timing of premating and mating behavior in a field population of the cricket Gryllus campestris L. Behav Ecol Sociobiol 21(5):279–289

    Article  Google Scholar 

  • Russo S, Marchese AF, Sillmann J, Immé G (2016) When will unusual heat waves become normal in a warming Africa? Environ Res Lett 11(5):054016

  • Sakai M, Kumashiro M, Matsumoto Y, Ureshi M, Otsubo T (2017) Reproductive behavior and physiology in the cricket Gryllus bimaculatus. In: Horch HW, Mito T, Popadić A, Ohuchi H, Noji S, editors. The cricket as a model organism: Development, regeneration, and behavior. Springer Nature. p. 245–269

  • Saleh NW, Larson EL, Harrison RG (2014) Reproductive success and body size in the cricket Gryllus firmus. J Insect Behav 27(3):346–356

    Article  Google Scholar 

  • Sales K, Vasudeva R, Dickinson ME, Godwin JL, Lumley AJ, Michalczyk Ł, Hebberecht L, Thomas P, Franco A, Gage MJG (2018) Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat Commun 9(1):4771. https://doi.org/10.1038/s41467-018-07273-z

  • Sanders D, Frago E, Kehoe R, Patterson C, Gaston KJ (2021) A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol 5(1):74–81

    Article  PubMed  Google Scholar 

  • Seymoure BM (2018) Enlightening butterfly conservation efforts: the importance of natural lighting for butterfly behavioral ecology and conservation. Insects 9(1):22. https://doi.org/10.3390/insects9010022

  • Shafiei Shiva J, Chandler DG, Kunkel KE (2019) Localized changes in heat wave properties across the united states. Earth’s Futur 7(3):300–319

    Article  Google Scholar 

  • Shanks AL, Rasmuson LK, Valley JR, Jarvis MA, Salant C, Sutherland DA, Lamont EI, Hainey MAH, Emlet RB (2020) Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnol Oceanogr 65(3):627–636

    Article  Google Scholar 

  • Shoemaker KL, Adamo SA (2007) Adult female crickets, Gryllus texensis, maintain reproductive output after repeated immune challenges. Physiol Entomol 32(2):113–120

    Article  Google Scholar 

  • Simmons LW (1986) Inter-male competition and mating success in the field cricket, Gryllus bimaculatus (de geer). Anim Behav 34(2):567–579

    Article  Google Scholar 

  • Sokolova IM (2013) Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr Comp Biol 53(4):597–608

    Article  PubMed  Google Scholar 

  • Solymar B, Cade WH (1990) Age of first mating in field crickets, Gryllus Integer (Orthoptera: Gryllidae). Florida Entomol 73(1):193–195

    Article  Google Scholar 

  • Stahlschmidt ZR, Adamo SA (2013) Warm and cozy: temperature and predation risk interactively affect oviposition site selection. Anim Behav 86(3):553–558

    Article  Google Scholar 

  • Stahlschmidt ZR, Chang E (2021) Body condition indices are better surrogates for lean mass and water content than for body fat content in an insect. J Zool 315(2):131–137

    Article  Google Scholar 

  • Stahlschmidt ZR, Glass JR (2020) Life history and immune challenge influence metabolic plasticity to food availability and acclimation temperature. Physiol Biochem Zool 93(4):271–281

    Article  PubMed  Google Scholar 

  • Stahlschmidt ZR, Vo C (2022) Spatial bet-hedging, thermal tradeoffs, and glyphosate: crickets integrate multivariate information during oviposition. Anim Behav 185:105–112

    Article  Google Scholar 

  • Stahlschmidt Z, O’Leary ME, Adamo S (2014) Food limitation leads to risky decision making and to tradeoffs with oviposition. Behav Ecol 25(1):223–227

    Article  Google Scholar 

  • Stahlschmidt ZR, Chu I, Koh C (2020) When do looks matter? effects of mate quality and environmental variability on lifetime reproduction. Behav Ecol Sociobiol 74(11). https://doi.org/10.1007/s00265-019-2790-9

  • Sun Y, Hu T, Zhang X (2018) Substantial increase in heat wave risks in china in a future warmer world. Earth’s Futur 6(11):1528–1538

    Article  Google Scholar 

  • Sun B, Huebner C, Treidel LA, Clark RM, Roberts KT, Kenagy GJ, Williams CM (2020) Nocturnal dispersal flight of crickets: behavioural and physiological responses to cool environmental temperatures. Funct Ecol 34(9):1907–1920

    Article  Google Scholar 

  • Todgham AE, Stillman JH (2013) Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr Comp Biol 53:539–544

    Article  PubMed  Google Scholar 

  • Touzot M, Teulier L, Lengagne T, Secondi J, Théry M, Libourel P-, Guillard L, Mondy N (2019) Artificial light at night disturbs the activity and energy allocation of the common toad during the breeding period. Conserv Physol 7(1):coz002. https://doi.org/10.1093/conphys/coz002

  • Touzot M, Lengagne T, Secondi J, Desouhant E, Théry M, Dumet A, Duchamp C, Mondy N. (2020) Artificial light at night alters the sexual behaviour and fertilisation success of the common toad. Environ Pollut. 259

  • Van den Broeck M, De Cock R, Van Dongen S, Matthysen E (2021) White LED light intensity, but not colour temperature, interferes with mate-finding by glow-worm (Lampyris noctiluca L.) males. J Insect Conserv 25(2):339–347

  • van Geffen KG, van Eck E, de Boer RA, van Grunsven RHA, Salis L, Berendse F, Veenendaal EM (2015) Artificial light at night inhibits mating in a geometrid moth. Insect Conserv Diversity 8(3):282–287

    Article  Google Scholar 

  • van Grunsven RHA, van Deijk JR, Donners M, Berendse F, Visser ME, Veenendaal E, Spoelstra K (2020) Experimental lightat night has a negative long-term impact on macro-moth populations. Curr Biol 30:R694–R695

    Article  PubMed  CAS  Google Scholar 

  • Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O'Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B Biol Sci 281(1779):20132612. https://doi.org/10.1098/rspb.2013.2612

  • Weissman DB, Gray DA (2019) Crickets of the genus Gryllus in the United States (Orthoptera: Gryllidae: Gryllinae). Zootaxa 4705(1):1–277

    Article  Google Scholar 

  • Welbers AAMH, van Dis NE, Kolvoort AM, Ouyang J, Visser ME, Spoelstra K, Dominoni DM (2017) Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front Ecol Evol 5. https://doi.org/10.3389/fevo.2017.00055

  • Willmott NJ, Henneken J, Selleck CJ, Jones TM. (2018) Artificial light at night alters life history in a nocturnal orb-web spider. PeerJ 6:e5599. https://doi.org/10.7717/peerj.5599

  • Youngsteadt E, Dale AG, Terando AJ, Dunn RR, Frank SD (2015) Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Global Change Biol 21(1):97–105

    Article  Google Scholar 

  • Zera AJ, Larsen A (2001) The metabolic basis of life history variation: genetic and phenotypic differences in lipid reserves among life history morphs of the wing-polymorphic cricket. Gryllus Firmus J Insect Physiol 47(10):1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Zera AJ (2005) Intermediary metabolism and life history trade-offs: lipid metabolism in lines of the wing-polymorphic cricket, Gryllus firmus, selected for flight capability vs. early age reproduction. Integr Comp Biol 45(3):511–524

Download references

Funding

We thank the National Science Foundation (IOS-1565695 to Z.R.S.) and the University of the Pacific (to Z.R.S.) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary R. Stahlschmidt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by K. Shaw.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1232 KB)

Supplementary file2 (XLSX 166 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stahlschmidt, Z.R., Chun, P., Luc, D. et al. Reproduction of a field cricket under high-intensity artificial light at night and a simulated heat wave. Behav Ecol Sociobiol 76, 109 (2022). https://doi.org/10.1007/s00265-022-03220-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-022-03220-7

Keywords

Navigation