Skip to main content
Log in

Reproductive Success and Body Size in the Cricket Gryllus firmus

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Male body size influences mate choice and sexual selection in many animal species. Here we investigate the role of male body size in the reproductive success of the field cricket Gryllus firmus. This species hybridizes with a close smaller relative, G. pennsylvanicus, and it is thought that this size difference may affect reproductive isolation between these species. We paired large and small G. firmus males with a single G. firmus female and genotyped the resulting offspring. Overall, larger males sired a greater proportion of offspring and in a majority of the crosses the larger male sired all of the offspring. For crosses in which both males sired offspring, there was no difference in the proportion of offspring sired by small and large males. Intrasexual competition, female choice, and differences in ejaculates between males could all influence the patterns we observe. We discuss the implications of our findings within the context of reproductive isolation between G. firmus and G. pennsylvanicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander RD (1961) Aggressiveness, territoriality, and sexual behavior in field crickets (Orthoptera: Gryllidae). Behaviour 17(2/3):130–223

    Article  Google Scholar 

  • Alexander RD (1968) Life cycle origins, speciation, and related phenomena in crickets. Q Rev Biol 43(1):1–41

    Google Scholar 

  • Alexander RD, Otte D (1967) The evolution of genitalia and mating behavior in crickets (Gryllidae) and other Orthopterans. Misc Publ Mus Zool Univ Mich 133:1–62

    Google Scholar 

  • Andersson M, Iwasa Y (1996) Sexual selection. Trends Ecol Evol 11(2):53–58

    Article  PubMed  CAS  Google Scholar 

  • Barbosa M, Dornelas M, Magurran AE (2010) Effects of polyandry on male phenotypic diversity. J Evol Biol 23(11):2442–2452

    Article  PubMed  CAS  Google Scholar 

  • Bateman PW, Gilson LN, Ferguson JWH (2001) Male size and sequential mate preference in the cricket Gryllus bimaculatus. Anim Behav 61(3):631–637

    Article  Google Scholar 

  • Bertram SM, Rook VLM, Fitzsimmons JM, Fitzsimmons LP (2011) Fine- and broad-scale approaches to understanding the evolution of aggression in crickets. Ethology 117(12):1067–1080

    Article  Google Scholar 

  • Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Q Rev Biol 75(4):385–407

    Article  PubMed  CAS  Google Scholar 

  • Blows MW, Allan RA (1998) Levels of mate recognition within and between two drosophila species and their hybrids. Am Nat 152(6):826–837

    Article  PubMed  CAS  Google Scholar 

  • Bretman A, Tregenza T (2005) Measuring polyandry in wild populations: a case study using promiscuous crickets. Mol Ecol 14(7):2169–2179

    Article  PubMed  CAS  Google Scholar 

  • Brown WD, Smith AT, Moskalik B, Gabriel J (2006) Aggressive contests in house crickets: size, motivation and the information content of aggressive songs. Anim Behav 72(1):225–233

    Article  Google Scholar 

  • Calder WA (1996) Size, function, and life history. Dover Publications, Mineola, NY

  • Fedorka KM, Mousseau TA (2002a) Nuptial gifts and the evolution of male body size. Evolution 56(3):590–596

    Article  PubMed  Google Scholar 

  • Fedorka KM, Mousseau TA (2002b) Material and genetic benefits of female multiple mating and polyandry. Anim Behav 64(3):361–367

    Article  Google Scholar 

  • Hack MA (1997) Assessment strategies in the contests of male crickets, Acheta domesticus(L.). Anim Behav 53(4):733–747

    Article  Google Scholar 

  • Harrison RG (1985) Barriers to gene exchange between closely related cricket species. II. Life cycle variation and temporal isolation. Evolution 39(2):244–259

    Article  Google Scholar 

  • Harrison RG (1986) Pattern and process in a narrow hybrid zone. Heredity 56(3):337–349

    Article  Google Scholar 

  • Hofmann HA, Schildberger K (2001) Assessment of strength and willingness to fight during aggressive encounters in crickets. Anim Behav 62(2):337–348

    Article  Google Scholar 

  • Jennions MD, Petrie M (1997) Variation in mate choice and mating preferences: a review of causes and consequences. Biol Rev 72(2):283–327

    Article  PubMed  CAS  Google Scholar 

  • Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  • Larson EL, Hume GL, Andres JA, Harrison RG (2012a) Post-mating prezygotic barriers to gene exchange between hybridizing field crickets. J Evol Biol 25(1):174–186

    Article  PubMed  CAS  Google Scholar 

  • Larson EL, Andrés JA, Harrison RG (2012b) Influence of the male ejaculate on post-mating prezygotic barriers in field crickets. PLoS ONE 7(10):e46202. doi:10.1371/journal.pone.0046202

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Larson EL, Guilherme Becker C, Bondra ER, Harrison RG (2013) Structure of a mosaic hybrid zone between the field crickets Gryllus firmus and G. pennsylvanicus. Ecol Evol. doi:10.1002/ece3.514

    PubMed Central  PubMed  Google Scholar 

  • Maroja LS, Andres JA, Walters JR, Harrison RG (2009) Multiple barriers to gene exchange in a field cricket hybrid zone. Biol J Linn Soc 97(2):390–402

    Article  Google Scholar 

  • Partridge L, Farquhar M (1983) Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim Behav 31(3):871–877

    Article  Google Scholar 

  • Peters RH (1986) The ecological implications of body size. Cambridge University Press, Cambridge

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 3-900051-07-0: http://www.R-project.org

    Google Scholar 

  • Rillich J, Schildberger K, Stevenson PA (2007) Assessment strategy of fighting crickets revealed by manipulating information exchange. Anim Behav 74(4):823–836

    Article  Google Scholar 

  • Rodríguez-Muñoz R, Bretman A, Slate J, Walling CA, Tregenza T (2010) Natural and sexual selection in a wild insect population. Science 328(5983):1269–1272

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Muñoz R, Bretman A, Tregenza T (2011) Guarding males protect females from predation in a wild insect. Curr Biol 21(20):1716–1719

    Article  PubMed  CAS  Google Scholar 

  • Roff DA (1981) On being the right size. Am Nat 118(3):405–422

    Article  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York, NY

  • Ryan MJ, Rand AS (1993) Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47(2):647–657

    Article  Google Scholar 

  • Sakaluk SK (1985) Spermatophore size and its role in the reproductive behaviour of the cricket, Gryllodes supplicans (orthoptera: Gryllidae). Can J Zool 63(7):1652–1656

    Article  Google Scholar 

  • Simmons LW (1986a) Inter-male competition and mating success in the field cricket, gryllus bimaculatus (de geer). Anim Behav 34(2):567–579

    Article  Google Scholar 

  • Simmons LW (1986b) Female choice in the field cricket Gryllus bimaculatus (de geer). Anim Behav 34(5):1463–1470

    Article  Google Scholar 

  • Simmons LW (1987) Female choice contributes to offspring fitness in the field cricket, gryllus bimaculatus (de geer). Behav Ecol Sociobiol 21(5):313–321

    Article  Google Scholar 

  • Simmons LW (1988) Male size, mating potential and lifetime reproductive success in the field cricket, gryllus bimaculatus (de geer). Anim Behav 36(3):372–379

    Google Scholar 

  • Simmons LW (1992) Sexual selection and body size in a natural population of the field cricket, gryllus campestris (L.). J Orthopt Res 1:12–13

    Article  Google Scholar 

  • Simmons LW (1995) Correlates of male quality in the field cricket, Gryllus campestris L.: age, size, and symmetry determine pairing success in field populations. Behav Ecol 6(4):376–381

    Article  Google Scholar 

  • Simmons LW (2001) The evolution of polyandry: an examination of the genetic incompatibility and good-sperm hypotheses. J Evol Biol 14(4):585–594

    Article  Google Scholar 

  • Simmons LW, Beveridge M (2010) The strength of postcopulatory sexual selection within natural populations of field crickets. Behav Ecol 21(6):1179–1185

    Google Scholar 

  • Tregenza T, Wedell N (1998) Benefits of multiple mates in the cricket Gryllus bimaculatus. Evolution 52(6):1726–1730

    Article  Google Scholar 

  • Vahed K (1998) The function of nuptial feeding in insects: a review of empirical studies. Biol Rev 73(1):43–78

    Article  Google Scholar 

  • Webb KL, Roff DA (1992) The quantitative genetics of sound production in Gryllus firmus. Anim Behav 44(5):823–832

    Article  Google Scholar 

  • Whitman DW (2008) The significance of body size in the Orthoptera: a review. J Orthopt Res 17(2):117–134

    Article  Google Scholar 

  • Wiernasz DC, Kingsolver JG (1992) Wing melanin pattern mediates species recognition in pieris occidentalis. Anim Behav 43(1):89–94

    Article  Google Scholar 

  • Zeh JA, Zeh DW (2006) Outbred embryos rescue inbred half-siblings in mixed-paternity broods of live-bearing females. Nature 439(7073):201–203

    Article  PubMed  CAS  Google Scholar 

  • Zuk M (1987) Variability in attractiveness of male field crickets (orthoptera: Cryllidae) to females. Anim Behav 35(4):1240–1248

    Article  Google Scholar 

  • Zuk M, Simmons LW (1997) Reproductive strategies of the crickets (Orthoptera: Gryllidae). In: Choe JC, Crespi BJ (eds) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge, pp 89–109

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the members of the Harrison lab, Nathan Morehouse, and members of the Morehouse lab for useful comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, N.W., Larson, E.L. & Harrison, R.G. Reproductive Success and Body Size in the Cricket Gryllus firmus . J Insect Behav 27, 346–356 (2014). https://doi.org/10.1007/s10905-013-9425-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-013-9425-1

Keywords

Navigation