Skip to main content

Advertisement

Log in

Potential distribution models and the effect of climatic change on the distribution of Phengaris nausithous considering its food plant and host ants

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Climate change has an effect upon the distribution of butterflies, affecting species that are already sensitive due to their specific ecological requirements. This is the case of Phengaris nausithous, an endangered species in the Iberian Peninsula. For its survival, the species needs to become a parasite of one of the two species of the Myrmica ant genus: M. rubra or M. scabrinodis, in whose nests it completes its life cycle. It also needs the presence of the larval host plant, Sanguisorba officinalis. Using the known distribution of P. nausithous in 10 × 10 km UTM squares, we work out the potential distribution of the species and the effect of climate change, using two different scenarios (SRES A2 and B2, which respectively predict 3.4 and 2.4 °C of temperature increase), by modulating it based on the species on which it depends for survival. The obtained models present AUC values (Area Under a Receiver Operating Characteristic—ROC-Curve) above 0.9 in the case of P. nausithous and S. officinalis, and above 0.8 in the case of the host ants, indicating acceptable models. Climatic models show a reduction of the potential distribution area of P. nausithous with both climatic scenarios, and predict as favourable areas in 2080 locations where the species is currently not found, but with presence of its host plant and ants. If this process takes place, an introduction in its favourable areas in the Pyrenees could be considered in order to conserve the species in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alba-Sánchez F, López-Sáez JA, Benito-de Pando B, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16:214–228

    Article  Google Scholar 

  • Anderson RP, Peterson AT, Gómez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98:3–16. doi:10.1034/j.1600-0706.2002.t01-1-980116.x

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Global Ecol Biogeogr 16:743–753. doi:10.1111/j.1466-8238.2007.00359.x

    Article  Google Scholar 

  • Araújo MB, Rozenfeld A (2014) The geographic scaling of biotic interactions. Ecography 37:406–415. doi:10.1111/j.1600-0587.2013.00643.x

    Google Scholar 

  • Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219. doi:10.1111/ele.12155

    Article  PubMed  Google Scholar 

  • Baldwin RA, Bender LC (2008) Den-site characteristics of black bears in Rocky Mountain National Park, Colorado. J Wildl Manage 72:1717–1724. doi:10.2193/2007-393

    Article  Google Scholar 

  • Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci 108:20645–20649. doi:10.1073/pnas.1115559108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17:61–68

    Article  Google Scholar 

  • Diamond SE, Cayton H, Wepprich T, Jenkins CN, Dunn RR, Haddad NM, Ries L (2014) Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology 95:2613–2621. doi:10.1890/13-1848.1

    Article  Google Scholar 

  • Dover JW et al (2011) Land-use, environment, and their impact on butterfly populations in a mountainous pastoral landscape: individual species distribution and abundance. J Insect Conserv 15:207–220. doi:10.1007/s10841-010-9338-7

    Article  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Ellwood ER, Diez JM, Ibañez I, Primack RB, Kobori H, Higuchi H, Silander J (2012) Disentangling the paradox of insect phenology: are temporal trends reflecting the response to warming? Oecologia 168:1161–1171. doi:10.1007/s00442-011-2160-4

    Article  PubMed  Google Scholar 

  • Elmes GW, Thomas JA (1992) Complexity of species conservation in managed habitats: interaction between Maculinea butterflies and their ant hosts. Biodivers Conserv 1:155–169. doi:10.1007/BF00695913

    Article  Google Scholar 

  • ESRI (2006) Arc-GIS 9.2. Environmental Science Research Institute, Redlands

    Google Scholar 

  • Felicísimo ÁM (2011) Impactos, vulnerabilidad y adaptación al cambio climático de la biodiversidad española 2 Flora y vegetación. Oficina Española de Cambio Climático, Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid

    Google Scholar 

  • Fordham DA et al (2013) Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature Clim Change 3:899–903

    Article  Google Scholar 

  • Forrest JRK (2015) Plant–pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13. doi:10.1111/oik.01386

    Article  Google Scholar 

  • García-Barros E, Munguira ML, Martín J, Romo H, Garcia-Pereira P, Maravalhas ES (2004) Atlas de las mariposas diurnas de la Península Ibérica e islas Baleares (Lepidoptera: Papilionoidea & Hesperioidea). Atlas of the butterflies of the Iberian Peninsula and Balearic Islands (Lepidoptera: Papilionoidea & Hesperioidea). Monografias de la SEA, vol 11. Sociedad Entomológica Aragonesa., Sociedad Entomológica Aragonesa, Zaragoza

    Google Scholar 

  • García-Barros E, Munguira ML, Stefanescu C, Vives Moreno A, Lamas G (2013) Lepidoptera, Papilionoidea. In: Ramos MA et al (eds) Fauna Ibérica, 37. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp 1–1213

    Google Scholar 

  • García-López JM, Allué C (2001) Aproximación al catálogo florístico de la provincia de Burgos. Ecología 15:111–168

    Google Scholar 

  • Giannini TC, Chapman DS, Saraiva AM, Alves-dos-Santos I, Biesmeijer JC (2013) Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography 36:649–656. doi:10.1111/j.1600-0587.2012.07191.x

    Article  Google Scholar 

  • Gómez D, Mateo G, Mercadal N, Montserrat P, Sesé JA (2010) Atlas de la Flora de Aragón. Instituto Pirenaico de Ecología. Departamento de Medio Ambiente del Gobierno de Aragón. Publicación digital. http://www.ipe.csic.es/floragon/. Visited on 24/11/2014

  • Gordo O, Sanz J (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–495. doi:10.1007/s00442-005-0240-z

    Article  PubMed  Google Scholar 

  • Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006) Using Niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511. doi:10.1111/j.1523-1739.2006.00354.x

    Article  PubMed  Google Scholar 

  • Habel JC, Schmitt T, Meyer M, Finger A, Rödder D, Assmann T, Zachos FE (2010) Biogeography meets conservation: the genetic structure of the endangered lycaenid butterfly Lycaena helle (Denis & Schiffermüller, 1775). Biol J Linn Soc 101:155–168. doi:10.1111/j.1095-8312.2010.01471.x

    Article  Google Scholar 

  • Hawkins BA, Porter EE (2003) Does herbivore diversity depend on plant diversity? The case of California butterflies. Am Nat 161:40–49. doi:10.1086/345479

    Article  PubMed  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerknes A-L, Totland Ø (2009) How does climate warming affect plant–pollinator interactions? Ecol Lett 12:184–195. doi:10.1111/j.1461-0248.2008.01269.x

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hijmans RJ, Guarino L, Mathur P (2012) DIVA-GIS. Versión 7.5. Manual. http://www.diva-gis.org

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B 269:2163–2171. doi:10.1098/rspb.2002.2134

    Article  CAS  Google Scholar 

  • Hochberg ME, Thomas JA, Elmes GW (1992) A modelling study of the population dynamics of a large blue butterfly, Maculinea rebeli, a parasite of red ant nests. J Anim Ecol 61:397–409. doi:10.2307/5331

    Article  Google Scholar 

  • Hof AR, Jansson R, Nilsson C (2012) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Divers Distrib 18:554–562. doi:10.1111/j.1472-4642.2011.00876.x

    Article  Google Scholar 

  • Hovestadt T, Binzenhöfer B, Nowicki P, Settele J (2011) Do all inter-patch movements represent dispersal? A mixed kernel study of butterfly mobility in fragmented landscapes. J Anim Ecol 80:1070–1077. doi:10.1111/j.1365-2656.2011.01848.x

    Article  PubMed  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. doi:10.1016/S0169-5347(99)01764-4

    Article  PubMed  Google Scholar 

  • IPCC (2000) Climate change 2000: emission scenarios. Summary for policymakers. A special Report of IPCC Working Group III of the intergovernmental Panel on climate Change. Nakicenovic N, Swart R (eds), Cambridge University Press Cambridge, UK

  • IPCC (2007) Summary for policymakers climate change 2007: the physical science basis. In: Solomon SQD, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A, Hortal J (2008) Challenging species distribution models: the case of Maculinea nausithous in the Iberian Peninsula. Ann Zool Fennici 45:200–210. doi:10.5735/086.045.0305

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi:10.1111/j.1461-0248.2005.00796.x

    Article  Google Scholar 

  • Kudrna O, Pennerstorfer J, Lux K (2015) Distribution atlas of European butterflies and skippers. Wissenschaftlicher Verlag Peks e.K, Schwanfel

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600. doi:10.1111/j.1523-1739.2003.00233.x

    Article  Google Scholar 

  • Luoto M, Heikkinen RK, Poyry J, Saarinen K (2006) Determinants of the biogeographical distribution of butterflies in boreal regions. J Biogeogr 33:1764–1778

    Article  Google Scholar 

  • Maes D, Vanreusel W, Talloen W, Dyck HV (2004) Functional conservation units for the endangered alcon blue butterfly Maculinea alcon in Belgium (Lepidoptera: Lycaenidae). Biol Conserv 120:229–241. doi:10.1016/j.biocon.2004.02.018

    Article  Google Scholar 

  • Morueta-Holme N, Fløjgaard C, Svenning J-C (2010) Climate change risks and conservation implications for a threatened small-range mammal species. PLoS One 5:e10360. doi:10.1371/journal.pone.0010360

    Article  PubMed Central  PubMed  Google Scholar 

  • Munguira ML (1989) Biología y Biogeografía de los licénidos ibéricos en peligro de extinción (Lepidoptera, Lycaenidae). Thesis doctoral, Universidad Autónoma de Madrid, Facultad de Ciencias

  • Munguira ML, Martín J (1993) The conservation of endangered lycaenid butterflies in Spain. Biol Conserv 66:17–22. doi:10.1016/0006-3207(93)90130-S

    Article  Google Scholar 

  • Munguira ML, Martín J (1999) Action plan for Maculinea butterfies in Europe. Nature and environment, vol 97. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Munguira ML, Martín J, Balleto E (1993) Conservation biology of Lycaenidae: a European overview. In: New TRE (ed) Conservation biology of Lycaenidae (butterflies). IUCN, The World Conservation Union, Gland, pp 23–34

    Google Scholar 

  • Munguira ML, Martín J, Orueta D, Viejo JL, García-Barros E (2001) Maculinea nausithous (Bergstrasser, 1779). In: Ramos M, Bragado D, Fernandez J (eds) Los invertebrados no insectos de la “directiva hábitat” en España. Organismo Autonomo de Parques Nacionales, Ministerio de Medio Ambiente, Madrid, pp 163–173

    Google Scholar 

  • Munguira ML, Romo H, Martín J, García-Barros E (2011) Phengaris nausithous (Bergsträsser, 1779). In: Verdú JR, Numa C, Galante E (eds) Atlas y Libro Rojo de los Invertebrados amenazados de España (Especies Vulnerables). Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid, pp 1258–1264

    Google Scholar 

  • Navarro-Cerrillo RM, Hernández-Bermejo JE, Hernández-Clemente R (2011) Evaluating models to assess the distribution of Buxus balearica in southern Spain. Appl Veg Sci 14:256–267. doi:10.1111/j.1654-109X.2010.01112.x

    Article  Google Scholar 

  • NGIA (2008) User’s guide for geographic translator (GEOTRANS) version 2.4.2. National Geospatial-Intelligence Agency, Rome, p 173

    Google Scholar 

  • Nowicki P, Vrabec V, Binzenhöfer B, Feil J, Zakšek B, Hovestadt T, Settele J (2014) Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landsc Ecol 29:401–412. doi:10.1007/s10980-013-9971-0

    Article  Google Scholar 

  • Omann I, Stocker A, Jäger J (2009) Climate change as a threat to biodiversity: an application of the DPSIR approach. Ecol Econ 69:24–31. doi:10.1016/j.ecolecon.2009.01.003

    Article  Google Scholar 

  • Ovaskainen O et al (2013) Community-level phenological response to climate change. Proc Natl Acad Sci 110:13434–13439. doi:10.1073/pnas.1305533110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parmesan C (2003) Butterflies as bioindicators for Climate Change effects. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies. Ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 541–560

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583. doi:10.1038/21181

    Article  CAS  Google Scholar 

  • Pawar S, Koo MS, Kelley C, Ahmed FM, Choudhury S, Sarkar S (2007) Conservation assessment and prioritization of areas in Northeast India: priorities for amphibians and reptiles. Biol Conserv 136:346–361. doi:10.1016/j.biocon.2006.12.012

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245. doi:10.1016/S0304-3800(00)00322-7

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. doi:10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  • Peñuelas J et al (2004) Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a North–South European gradient. Ecosystems 7:598–612. doi:10.1007/s10021-004-0179-7

    Article  Google Scholar 

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Inform 3:59–72. doi:10.17161/bi.v3i0.29

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. doi:10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Ecol Syst 47:733–771. doi:10.1146/annurev.ento.47.091201.145257

    CAS  Google Scholar 

  • Polgar CA, Primack RB, Williams EH, Stichter S, Hitchcock C (2013) Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol Conserv 160:25–31. doi:10.1016/j.biocon.2012.12.024

    Article  Google Scholar 

  • Post E (2012) Ecology of climate change: the importance of biotic interactions. Princeton University Press, Princeton

    Google Scholar 

  • Quinn RM, Gaston KJ, Roy DB (1998) Coincidence in the distributions of butterflies and their foodplants. Ecography 21:279–288. doi:10.1111/j.1600-0587.1998.tb00565.x

    Article  Google Scholar 

  • Radchuk V, Turlure C, Schtickzelle N (2013) Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim Ecol 82:275–285. doi:10.1111/j.1365-2656.2012.02029.x

    Article  PubMed  Google Scholar 

  • Raxworthy CL, Martínez-Meyer E, Horning N, Nussbaum RA, Schnelder GE, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841. doi:10.1038/nature02205

    Article  CAS  PubMed  Google Scholar 

  • Real R, Márquez AL, Olivero J, Estrada A (2010) Species distribution models in climate change scenarios are still not useful for informing policy planning: an uncertainty assessment using fuzzy logic. Ecography 33:304–314. doi:10.1111/j.1600-0587.2010.06251.x

    Google Scholar 

  • Real R, Romero D, Olivero J, Estrada A, Márquez AL (2013) Estimating how inflated or obscured effects of climate affect forecasted species distribution. PLoS One 8:e53646. doi:10.1371/journal.pone.0053646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romo H, García-Barros E (2005) Distribución e intensidad de los estudios faunísticos sobre mariposas diurnas en la Península Ibérica e islas Baleares (Lepidoptera, Papilionoidea y Hesperioidea). Graellsia 61:37–50. doi:10.3989/graellsia.2005.v61.i1.5

    Article  Google Scholar 

  • Romo H, García-Barros E, Márquez AL, Moreno JC, Real R (2014a) Effects of climate change on the distribution of ecologically interacting species: butterflies and their main food plants in Spain. Ecography 37:1063–1072. doi:10.1111/ecog.00706

    Google Scholar 

  • Romo H, García-Barros E, Munguira ML, Martín Cano J (2014b) Recorded and potential distributions on the iberian peninsula of speciesof Lepidoptera listed in the habitats directive. Eur J Entomol 111:407–415. doi:10.14411/eje.2014.042

    Article  Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479. doi:10.1890/07-1748.1

    Article  PubMed  Google Scholar 

  • Schweiger O et al (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecol Biogeogr 21:88–99. doi:10.1111/j.1466-8238.2010.00607.x

    Article  Google Scholar 

  • Sesé Franco JA, Villar Pérez L (1997) Atlas de la flora del Pirineo Aragonés. Instituto de Estudios Altoaragoneses, Huesca

    Google Scholar 

  • Settele JR, Scholes RB, Bunn S, Leadley P, Nepstad D, Overpeck JT, Taboada MA (2014) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.). Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 271–359

  • Settele J et al (2008) Climatic risk atlas of European butterflies. BioRisk 1:1–710. doi:10.3897/biorisk.1

    Article  Google Scholar 

  • Spangenberg JH et al (2012) Scenarios for investigating risks to biodiversity. Global Ecol Biogeogr 21:5–18. doi:10.1111/j.1466-8238.2010.00620.x

    Article  Google Scholar 

  • Stefanescu C, Penuelas J, Filella I (2003) Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Global Change Biol 9:1494–1506. doi:10.1046/j.1365-2486.2003.00682.x

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. doi:10.1126/science.3287615

    Article  CAS  PubMed  Google Scholar 

  • Tarkesh M, Jetschke G (2012) Comparison of six correlative models in predictive vegetation mapping on a local scale. Environ Ecol Stat 19:437–457. doi:10.1007/s10651-012-0194-3

    Article  Google Scholar 

  • Thomas JA (1984) The behaviour and habitat requirements of Maculinea nausithous (the dusky large blue butterfly) and M. Teleius (the scarce large blue) in France. Biol Conserv 28:325–347. doi:10.1016/0006-3207(84)90040-5

    Article  Google Scholar 

  • Thomas JA (1995) The ecology and conservation of Maculinea arion and other European species of large blue butterfly. In: Pullin AS (ed) Ecology and conservation of butterflies. Chapman & Hall, London, pp 180–197

    Chapter  Google Scholar 

  • Thomas JA, Munguira ML, Martin J, Elmes GW (1991) Basal hatching by Maculinea butterfly eggs: a consequence of advanced myrmecophily? Biol J Linn Soc 44:175–184. doi:10.1111/j.1095-8312.1991.tb00615.x

    Article  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581. doi:10.1038/35079066

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD et al (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250. doi:10.1073/pnas.0409902102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres R, Jayat JP (2010) Modelos predictivos de distribución para cuatro especies de mamíferos (cingulata, artiodactyla y rodentia) típicas del chaco en Argentina. Mastozool neotrop 17:335–352

    Google Scholar 

  • UICN (2015) The IUCN red list of threatened species. Version 2014.3. www.iucnredlist.org

  • van Langevelde F, Wynhoff I (2009) What limits the spread of two congeneric butterfly species after their reintroduction: quality or spatial arrangement of habitat? Anim Conserv 12:540–548. doi:10.1111/j.1469-1795.2009.00281.x

    Article  Google Scholar 

  • van Swaay C, Warren M (1999) Red data book of European butterflies (Rhopalocera). Nature and environment, no 99. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • van Swaay C et al (2010a) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Van Swaay C et al. (2010b) The European butterfly indicator for grassland species 1990–2009. Report VS2010.010, De Vlinderstichting, Wageningen

  • Van Swaay C et al. (2015) The European butterfly indicator for grassland species 1990–2013. Report VS2015.009, De Vlinderstichting, Wageningen

  • Verdú JR, Numa C, Galante E (2011) Atlas y Libro Rojo de los Invertebrados amenazados de España (Especies Vulnerables). Vols. 1, 2. Dirección General del Medio Natural y Política Forestal. Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid

  • Warren R et al (2013) Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Clim Change 3:678–682. doi:10.1038/nclimate1887

    Article  Google Scholar 

  • Wilson RJ, Maclean IM (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268. doi:10.1007/s10841-010-9342-y

    Article  Google Scholar 

  • Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biol 13:1873–1887. doi:10.1111/j.1365-2486.2007.01418.x

    Article  Google Scholar 

  • Witek M et al (2008) Host ant specificity of large blue butterflies Phengaris (Maculinea) (Lepidoptera: Lycaenidae) inhabiting humid grasslands in East-central Europe. Eur J Entomol 105:871–877

    Article  Google Scholar 

  • Wynhoff I (1998) Lessons from the reintroduction of Maculinea teleius and M. nausithous in the Netherlands. J Insect Conserv 2:47–57. doi:10.1023/A:1009692723056

    Article  Google Scholar 

  • Wynhoff I (2001) At home on foreign meadows: the reintroduction of two Maculinea butterfly species. Wageningen University, Wageningen

    Google Scholar 

  • Wynhoff I, van Gestel R, van Swaay C, van Langevelde F (2011) Not only the butterflies: managing ants on road verges to benefit Phengaris (Maculinea) butterflies. J Insect Conserv 15:189–206. doi:10.1007/s10841-010-9337-8

    Article  Google Scholar 

  • Young N, Carter L, Evangelista P, Jarnevich C (2011) A MaxEnt Model v333e Tutorial (ArcGIS v10). Natural Resource Ecology Laboratory at Colorado State University and the National Institute of Invasive Species Science, USA

    Google Scholar 

Download references

Acknowledgments

We want to thank Juan Carlos Moreno for his contribution with ideas about this paper and for providing distribution data of S. officinalis. Alberto Tinaut and Xavier Espadaler provided distribution data of the two ant species. We also thank to Miguel Nakamura for his advices and recommendations with the use of p value software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Romo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romo, H., Silvestre, M. & Munguira, M.L. Potential distribution models and the effect of climatic change on the distribution of Phengaris nausithous considering its food plant and host ants. J Insect Conserv 19, 1101–1118 (2015). https://doi.org/10.1007/s10841-015-9825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9825-y

Keywords

Navigation