Skip to main content

Advertisement

Log in

Chondrotoxic effects of tranexamic acid and povidone-iodine on the articular cartilage of rabbits

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the chondrotoxic effects of intra-articular use of TXA 20 mg/kg and/or 0.35% PVPI on knee joint cartilage in an experimental model of rabbits.

Methods

Forty-four male New Zealand adult rabbits were randomly assigned to four groups (control, tranexamic acid (TXA), povidone-iodine (PVPI), and PVPI + TXA). The knee joint cartilage was accessed through an arthrotomy and exposed to physiological saline SF 0.9% (control group), TXA, PVPI, and PVPI followed by TXA. Sixty days after surgical procedure, the animals were sacrificed and osteochondral specimens of the distal femur were obtained. Histological sections of cartilage from this area were stained with hematoxylin/eosin and toluidine blue. The following cartilage parameters were evaluated by the Mankin histological/histochemical grading system: structure, cellularity, glycosaminoglycan content in the extracellular matrix, and integrity of the tidemark.

Results

The isolated use of PVPI causes statistically significant changes in cartilage cellularity (p-value = 0.005) and decrease glycosaminoglycan content (p = 0.001), whereas the isolated use of TXA decreased significantly the glycosaminoglycan content (p = 0.031). The sequential use of PVPI + TXA causes more pronounced alterations in the structure (p = 0.039) and cellularity (p = 0.002) and decreased content of glycosaminoglycans (p < 0.001) all with statistical significance.

Conclusion

Data suggest that intra-articular use of tranexamic acid 20 mg/kg and intraoperative lavage with 0.35% povidone-iodine solution for three min are toxic to the articular cartilage of the knee in an experimental in vivo study in rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and materials are copyright of the author.

References

  1. Pabinger C, Lothaller H, Geissler A (2015) Utilization rates of knee- arthroplasty in OECD countries. Osteoarthr Cartil 23(10):1664–1673

    Article  CAS  Google Scholar 

  2. Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S (2017) Projected increase in total knee arthroplasty in the United States - an alternative projection model Osteoarthritis and Cartilage. Osteoarthr Cartil 25(11):1797–1803

    Article  CAS  Google Scholar 

  3. Huitema GC, de Vries LMA, Verboom TW, Spekenbrink-Spooren A, Steens J (2022) Patella related problems as common reason for revision of NexGen PS® total knee arthroplasty without patella resurfacing: an analysis of 5911 primary total knee arthroplasties registered in the Dutch Arthroplasty Register. Knee 34:217–222

    Article  PubMed  Google Scholar 

  4. Gandhi R, Evans HM, Mahomed SR, Mahomed NN (2013) Tranexamic acid and the reduction of blood loss in total knee and hip arthroplasty: a meta-analysis. BMC Res Notes 6:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raut S, Mertes SC, Muniz-Terrera G, Khanduja V (2012) Factors associated with prolonged length of stay following a total knee replacement in patients aged over 75. Int Orthop 36:1601–1608

    Article  PubMed  PubMed Central  Google Scholar 

  6. Konig G, Hamlin BR, Waters JH (2013) Topical tranexamic acid reduces blood loss and transfusion rates in total hip and total knee arthroplasty. J Arthroplasty 28(9):1473–1476

    Article  PubMed  Google Scholar 

  7. Fillingham YA, Ramkumar DB, Jevsevar DS, Yates AJ, Shores PD, Valle CJ (2018) The safety of tranexamic acid in total joint arthroplasty: a direct meta-analysis. J Arthroplasty 33(10):3070–3082

    Article  PubMed  Google Scholar 

  8. Chimento GF, Huff T, Ochsner JL Jr, Meyer M, Brandner L, Babin S (2013) An evaluation of the use of topical tranexamic acid in total knee arthroplasty. J Arthroplasty 28(8 suppl):74–77

    Article  PubMed  Google Scholar 

  9. Digas G, Koutsogiannis I, Meletiadis G (2015) Intra-articular injection of tranexamic acid reduce blood loss in cemented total knee arthroplasty. Eur J Orthop Surg Traumatol 25(7):1181–1188

    Article  CAS  PubMed  Google Scholar 

  10. Xu S, Chen JY, Zheng Q, Lo NN, Chia SL, Tay KJ, Pang HN, Shi L, Chan ES, Yeo SJ (2019) The safest and most efficacious route of tranexamic acid administration in total joint arthroplasty. A systemic review and network meta-analysis. Thromb Res 176:61–66

    Article  CAS  PubMed  Google Scholar 

  11. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ (2012) Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg 147(2):113–119

    Article  CAS  PubMed  Google Scholar 

  12. Goyal N, Chen DB, Harris IA (2017) Intravenous vs. intra-articular tranexamic acid in total knee arthroplasty: a randomized, double-blind trial. J Arthroplasty 32(1):28–32

    Article  PubMed  Google Scholar 

  13. Aguilera-Roig X, Jordan-Sales M, Natera-Cisneros L, Monllau-Garcia JC, Martinez-Zapata MJ (2014) Tranexamic acid in orthopedic surgery [in Spanish]. Rev Esp Cir Ortop Traumatol 58(1):52–56

    CAS  PubMed  Google Scholar 

  14. Wong J, Abrishami A, El Beheiry H (2010) Topical application of tranexamic acid reduces postoperative blood loss in total knee arthroplasty: a randomized, controlled trial. J Bone Joint Surg Am 92(15):2503–2513

    Article  PubMed  Google Scholar 

  15. Georgiadis AG, Muh SJ, Silverton CD, Weir RM, Laker MW (2013) A prospective double-blind placebo controlled trial of topical tranexamic acid in total knee arthroplasty. J Arthroplasty 28(8 suppl):78–82

    Article  PubMed  Google Scholar 

  16. McLean M, McCall K, Smith IDM (2019) Tranexamic acid toxicity in human periarticular tissues. Bone Joint Res 8(1):11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matar HE, Bloch BV, Snape SE (2021) Outcomes of single- and two-stage revision total knee arthroplasty for chronic periprosthetic joint infection: long-term outcomes of changing clinical practice in a specialist centre. Bone Joint J Aug 103-B(8):1373–1379

    Article  Google Scholar 

  18. Mihalko WM, Manaswi A, Cui Q (2008) Diagnosis and treatment of the infected primary total knee arthroplasty. Instr Course Lect 57:327

    PubMed  Google Scholar 

  19. Brown NM, Cipriano CA, Moric M (2012) Dilute betadine lavage before closure for the prevention of acute postoperative deep periprosthetic joint infection. J Arthroplasty 27:27

    Article  PubMed  Google Scholar 

  20. Chundamala J, Wright JG (2007) The efficacy and risks of using povidone–iodine irrigation to prevent surgical site infection: an evidence-based review. Can J Surg 50:473

    PubMed  PubMed Central  Google Scholar 

  21. Cheng MT, Chang MC, Wang ST (2005) Efficacy of dilute betadine solution irrigation in the prevention of postoperative infection of spinal surgery. Spine (Phila Pa 1976) 30:1689

    Article  PubMed  Google Scholar 

  22. Kim C-H, Kim H, Lee SJ, Yoon JY, Moon J-K, Lee S, Yoon PW (2020) The effect of povidone-iodine lavage in preventing infection after total hip and knee arthroplasties: systematic review and meta-analysis. J Arthroplasty 35(8):2267–2273

    Article  PubMed  Google Scholar 

  23. Shohat N, Goh GS, Harrer SL, Brown S (2022) Dilute povidone-iodine irrigation reduces the rate of periprosthetic joint infection following hip and knee arthroplasty: an analysis of 31,331 Cases. J Arthroplasty 37(2):226–231.e1

    Article  PubMed  Google Scholar 

  24. Jutai W, Feng S, Chen X, Lv Z, Zhe Q, Chen H, Xue C, Zhu M, Guo K-J, Wu P (2019) Intra-articular injection of tranexamic acid on perioperative blood loss during unicompartimental knee arthroplasty. Med Sci Monit 25:5068–5074

    Article  Google Scholar 

  25. Tuttle JR, Feltman PR, Ritterman SA, Ehrlich MG (2015) Effects of tranexamic acid cytotoxicity on in vitro chondrocytes. Am J Orthop (Belle Mead NJ) 44(12):E497–E502

    PubMed  Google Scholar 

  26. von Keudell A, Canseco JA, Gomoll AH (2013) Deleterious effects of diluted povidone–iodine on articular cartilage. J Arthroplasty 28:918–921

    Article  Google Scholar 

  27. Mankin HJ, LippIello L (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J Bone and Joint Surg 52-A:424–434

    Article  Google Scholar 

  28. Pauli C, Whiteside R, Heras FL, Nesic D, Koziol J, Grogan SP (2012) Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development. Osteoarthr Cartil 20(6):476–485

    Article  CAS  Google Scholar 

  29. Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg 53-A:523–537

    Article  Google Scholar 

  30. Van der Sluijs JA, Geesink RG, van der Linden AJ (1992) The reliability of the Mankin score for osteoarthritis. J Orthop Res 10:58–61

    Article  PubMed  Google Scholar 

  31. Paterson SI, Eltawil NM, Simpson AH, Amin AK, Hall AC (2016) Drying of open animal joints in vivo subsequently causes cartilage degeneration. Bone Joint Res 5(4):137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Özcan MS, Kalem M, Ozçelik M, Sahin E (2015) O efeito de levobupivacaína intra-articularsobre a cartilagem do ombro em doses diferentes - Estudo experimental. Rev Bras Anestesiol 67(1):42–49

    Article  Google Scholar 

  33. Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  34. Agresti A (2000) Categorical analysis. John Wiley, New York

    Google Scholar 

  35. Jaescke R, Singer J, Guyatt GH (1989) Measurement of health status. Ascertaining the minimal clinically important difference. In: Controlled Clinical Trials

    Google Scholar 

  36. Copay AG, Subach BR, Glassman SD, Polly DW, Schuler TC (2007) Understanding the minimum clinically important difference: a review of concepts and methods. Spine J 7(5):541–546

    Article  PubMed  Google Scholar 

  37. Kuhn K, D'Lima DD, Hashimoto S (2004) Cell death in cartilage. Osteoarthr Cartil 12:1

    Article  CAS  Google Scholar 

  38. Blanco FJ, Guitian R, Vazquez-Martul E (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 41:284

    Article  CAS  PubMed  Google Scholar 

  39. Kim HA, Lee YJ, Seong SC (2000) Apoptotic chondrocyte death in human osteoarthritis. J Rheumatol 27:455

    CAS  PubMed  Google Scholar 

  40. Parker JD, Lim KS, Kieser DC, Woodfield TBF, Hooper GJ (2018) Is tranexamic acid toxic to articular cartilage when administered topically? Bone Joint J 100-B(3):404–412

    Article  CAS  PubMed  Google Scholar 

  41. Schaumburger J, Beckmann J, Springorum HR (2010) Toxicity of antiseptics on chondrocytes in vitro. Z Orthop Unfall 148:39

    Article  CAS  PubMed  Google Scholar 

  42. Kataoka M, Tsumura H, Kaku N (2006) Toxic effects of povidone–iodine on synovial cell and articular cartilage. Clin Rheumatol 25:632

    Article  PubMed  Google Scholar 

  43. Boyd JI III, Wongworawat MD (2004) High-pressure pulsatile lavage causes soft tissue damage. Clin Orthop Relat Res 427:13–17

    Article  Google Scholar 

  44. Hassinger SM, Harding G, Wongworawat MD (2005) High-pressure pulsatile lavage propagates bacteria into soft tissue. Clin Orthop Relat Res 439:27–31

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Frederico Silva Pimenta, Marco Antônio Percope de Andrade, Cristiana Buzelin Nunes, Tulio Vinicius de Oliveira Campos, Guilherme Moreira de Abreu e Silva and Marcelo Araújo Buzelin. The first draft of the manuscript was written by Frederico Silva Pimenta and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Frederico Silva Pimenta.

Ethics declarations

Consent to participate

The research involved animals.

Consent to publish

The research involved animals.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenta, F.S., de Oliveira Campos, T.V., de Abreu e Silva, G.M. et al. Chondrotoxic effects of tranexamic acid and povidone-iodine on the articular cartilage of rabbits. International Orthopaedics (SICOT) 47, 2429–2437 (2023). https://doi.org/10.1007/s00264-023-05820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05820-y

Keywords

Navigation