Skip to main content

Advertisement

Log in

Onlay fibula autografting technique and its comparison with cortical allograft for the reconstruction of periprosthetic bone defects around the femur

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Bone defect around the femur related to revisions or periprosthetic fractures (PFF) is an issue. We present a bone defect reconstruction technique in femoral revisions and/or PFF using fibula autograft and compared our radiological and clinical results to that of allograft.

Methods

A total of 53 patients who underwent revision hip arthroplasty and/or PFF fixation with the use of cortical fibula autograft (FG group) or cortical allograft (CG group) were evaluated. After exclusions, 20 patients who had minimum two years of follow-up were investigated for each group, for their radiological and clinical outcomes.

Results

In FG and CG groups, the median ages were 69.5(44–90) and 62(38–88) years, follow-ups were 59(28–72) and 120(48–216) months, defect lengths were seven (1–10) and ten (1–17) cm, and grafts lengths were 16.5(10–30) and 20(12–37) cm, respectively. The rate of graft incorporation was 90% in each group and median time to incorporations were seven (4–12) and 12(6–24) months (p < 0.001), and graft resorption (moderate and severe) rates were 10% and 25% (p = 0.41), respectively. Median Harris Hip (77.6 vs 78.0), WOMAC (23.2 vs 22), SF-12 physical (50.0 vs 46.1), and SF-12 mental (53.8 vs 52.5) scores were similar between the groups, respectively. Kaplan–Meier survivorship analyses revealed an estimated mean survival of 100% at six years in FG group and 90% at 14 years in CG group.

Conclusion

In the reconstruction of periprosthetic bone defects after femoral revision or PPF, onlay cortical fibula autografts provide comparable clinical and radiological outcomes to allografts. Its incorporation is faster, it is cost-effective and easy to obtain without apparent morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M (2005) Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 87:1487–1497. https://doi.org/10.2106/JBJS.D.02441

    Article  PubMed  Google Scholar 

  2. Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, Karrholm J, Garellick G, Havelin LI, Furnes O, Malchau H, Lau E (2007) Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am 89(Suppl 3):144–151. https://doi.org/10.2106/JBJS.G.00587

    Article  PubMed  Google Scholar 

  3. Wroblewski BM (1984) Current trends in revision of total hip arthroplasty. Int Orthop 8:89–93. https://doi.org/10.1007/BF00265830

    Article  CAS  PubMed  Google Scholar 

  4. Ong A, Wong KL, Lai M, Garino JP, Steinberg ME (2002) Early failure of precoated femoral components in primary total hip arthroplasty. J Bone Joint Surg Am 84:786–792. https://doi.org/10.2106/00004623-200205000-00014

    Article  PubMed  Google Scholar 

  5. Phillips CB, Barrett JA, Losina E, Mahomed NN, Lingard EA, Guadagnoli E, Baron JA, Harris WH, Poss R, Katz JN (2003) Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg Am 85:20–26. https://doi.org/10.2106/00004623-200301000-00004

    Article  PubMed  Google Scholar 

  6. Parvizi J, Wade FA, Rapuri V, Springer BD, Berry DJ, Hozack WJ (2006) Revision hip arthroplasty for late instability secondary to polyethylene wear. Clin Orthop Relat Res 447:66–69. https://doi.org/10.1097/01.blo.0000218751.14989.a6

    Article  PubMed  Google Scholar 

  7. Jafari SM, Coyle C, Mortazavi SM, Sharkey PF, Parvizi J (2010) Revision hip arthroplasty: infection is the most common cause of failure. Clin Orthop Relat Res 468:2046–2051. https://doi.org/10.1007/s11999-010-1251-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I, Kuskowski M, Cheng EY, Sharkey PF, Parvizi J, Stiehl JB, Mont MA (2008) Total hip arthroplasties: what are the reasons for revision? Int Orthop 32:597–604. https://doi.org/10.1007/s00264-007-0364-3

    Article  PubMed  Google Scholar 

  9. Kuijpers MFL, Hannink G, Vehmeijer SBW, van Steenbergen LN, Schreurs BW (2019) The risk of revision after total hip arthroplasty in young patients depends on surgical approach, femoral head size and bearing type; an analysis of 19,682 operations in the Dutch arthroplasty register. BMC Musculoskelet Disord 20:385. https://doi.org/10.1186/s12891-019-2765-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmitz MW, Busch VJ, Gardeniers JW, Hendriks JC, Veth RP, Schreurs BW (2013) Long-term results of cemented total hip arthroplasty in patients younger than 30 years and the outcome of subsequent revisions. BMC Musculoskelet Disord 14:37. https://doi.org/10.1186/1471-2474-14-37

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gustilo RB, Pasternak H (1988) Revision total hip arthroplasty with titanium ingrowth prosthesis and bone grafting for failed cemented femoral component loosening. Clin Orthop Relat Res 235:111–9

    Google Scholar 

  12. Kavanagh BF, Ilstrup D, Fitzgerald RH Jr (1985) Revision total hip arthroplasty. J Bone Joint Surg Am 67(4):517

    Article  CAS  PubMed  Google Scholar 

  13. Maloney WJ, Jasty M, Rosenberg A et al (1990) Bone lysis in well-fixed cemented femoral components. J Bone Joint Surg (Br) 72(6):966

    Article  CAS  Google Scholar 

  14. Gruen TA, McNeice G, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

  15. Crockarell JR Jr, Berry DJ, Lewallen DG (1999) Nonunion after periprosthetic femoral fracture associated with total hip arthroplasty. J Bone Joint Surg Am 81:1073–1079. https://doi.org/10.2106/00004623-199908000-00003

    Article  PubMed  Google Scholar 

  16. Randelli F, Pace F, Priano D, Giai Via A, Randelli P (2018) Re-fractures after periprosthetic femoral fracture: a difficult to treat growing evidence. Injury 49(Suppl 3):S43–S47. https://doi.org/10.1016/j.injury.2018.09.045

    Article  PubMed  Google Scholar 

  17. Arealis G, Nikolaou VS, Lacon A, Ashwood N, Hamlet M (2014) Plate on plate osteosynthesis for the treatment of nonhealed periplate fractures. ISRN Orthop 2014:367490. https://doi.org/10.1155/2014/367490

    Article  PubMed  PubMed Central  Google Scholar 

  18. Emerson RH Jr, Malinin T, Cuellar AD, Head WC, Peters PC (1992) Cortical strut allografts in the reconstruction of the femur in revision total hip arthroplasty. A basic science and clinical study. Clin Orthop Relat Res 285:35–44

    Google Scholar 

  19. Gross AE, Lavoie M, McDermott P et al (1985) The use of allograft bone in revision of total hip arthroplasty. Clin Orthop Relat Res 197:115–122

    Google Scholar 

  20. Head WC, Malinin T, Mallory TH et al (1998) Onlay cortical allografting for the femur. Orthop Clin North Am 29:307–312

    Article  CAS  PubMed  Google Scholar 

  21. Head WC, Wagner R, Emerson RH et al (1993) Restoration of femoral bone stock in revision total hip arthroplasty. Orthop Clin North Am 24:697–703

    CAS  PubMed  Google Scholar 

  22. Chandler HP, King D, Limbird R et al (1993) The use of cortical allograft struts for fixation of fractures associated with well-fixed total joint prostheses. Semin Arthroplast 4:99–107

    CAS  Google Scholar 

  23. Kim YH, Park JW, Kim JS, Rastogi D (2015) High survivorship with cementless stems and cortical strut allografts for large femoral bone defects in revision THA. Clin Orthop Relat Res 473:2990–3000. https://doi.org/10.1007/s11999-015-4358-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fishman JA, Greenwald MA, Grossi PA (2012) Transmission of infection with human allografts: essential considerations in donor screening. Clin Infect Dis 55:720–727. https://doi.org/10.1093/cid/cis519

    Article  PubMed  Google Scholar 

  25. Ng VY (2012) Risk of disease transmission with bone allograft. Orthopedics 35:679–681. https://doi.org/10.3928/01477447-20120725-04

    Article  PubMed  Google Scholar 

  26. Mankin HJ, Hornicek FJ, Raskin KA (2005) Infection in massive bone allografts. Clin Orthop Relat Res:210–216. https://doi.org/10.1097/01.blo.0000150371.77314.52

  27. Walter M (1911) Resection de l’extremite inferieure du radius pour osteosarcome: greffe de l’extremité supériuie du péroné. Bull mém Soc chir Paris 37:739–747

    Google Scholar 

  28. Liu S, Tao S, Tan J, Hu X, Liu H, Li Z (2018) Long-term follow-up of fibular graft for the reconstruction of bone defects. Medicine (Baltimore) 97:e12605. https://doi.org/10.1097/MD.0000000000012605

    Article  Google Scholar 

  29. Swamy MK, Rathi A, Gupta V (2013) Results of non-vascularised fibular grafting in gap non-union of long bones in paediatric age group. J Clin Orthop Trauma 4:180–184. https://doi.org/10.1016/j.jcot.2013.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dell PC, Burchardt H, Glowczewskie FP Jr (1985) A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg Am 67-A:105–112

    Article  Google Scholar 

  31. Duncan CP, Masri B (1995) Fractures of the femur after hip replacement. Instr Course Lect 45:293–304

    Google Scholar 

  32. Aribindi R, Barba M, Solomon MI, Arp P, Paprosky W (1998) Bypass fixation. Orthop Clin North Am. 29(2):319–29. https://doi.org/10.1016/s0030-5898(05)70330-8

    Article  CAS  PubMed  Google Scholar 

  33. Kim YH, Franks D (1992) Cementless revision of cemented stem failures associated with massive femoral bone loss: a technical note. Orthop Rev 21:375–380

    CAS  PubMed  Google Scholar 

  34. Fernyhough JC, White JONI, Larocca H (1991) Fusion rates in multilevel cervical spondylosis comparing allograft fibula with autograft fibula in 126 patients. Spine J 16:10

    Article  Google Scholar 

  35. Faldini C, Traina F, Perna F, Borghi R, Nanni M, Chehrassan M (2015) Surgical treatment of aseptic forearm nonunion with plate and opposite bone graft strut. Autograft or allograft? Int Orthop 39:1343–1349. https://doi.org/10.1007/s00264-015-2718-6

    Article  PubMed  Google Scholar 

  36. Barden B, von Knoch M, Fitzek JG, Loer F (2003) Periprosthetic fractures with extensive bone loss treated with onlay strut allografts. Int Orthop 27:164–167. https://doi.org/10.1007/s00264-002-0423-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sariyilmaz K, Dikici F, Dikmen G, Bozdag E, Sunbuloglu E, Bekler B, Yazicioglu O (2014) The effect of strut allograft and its position on Vancouver type B1 periprosthetic femoral fractures: a biomechanical study. J Arthroplast 29:1485–1490. https://doi.org/10.1016/j.arth.2014.02.017

    Article  Google Scholar 

  38. Fakhri RM, Herard P, Liswi MI, Boulart AL, Al Ani AMK (2019) Decision-making algorithm for sequential treatment of diaphyseal bone gaps in war-wounded patients in the Middle East. Int Orthop 43:2653–2659. https://doi.org/10.1007/s00264-019-04317-x

    Article  PubMed  Google Scholar 

  39. Jamshidi K, Mirkazemi M, Izanloo A, Mirzaei A (2018) Locking plate and fibular strut-graft augmentation in the reconstruction of unicameral bone cyst of proximal femur in the paediatric population. Int Orthop 42:169–174. https://doi.org/10.1007/s00264-017-3648-2

    Article  PubMed  Google Scholar 

  40. Lochab J, Carrothers A, Wong E, McLachlin S, Aldebeyan W, Jenkinson R, Whyne C, Nousiainen MT (2017) Do transcortical screws in a locking plate construct improve the stiffness in the fixation of Vancouver B1 periprosthetic femur fractures? A biomechanical analysis of 2 different plating constructs. J Orthop Trauma 31:15–20. https://doi.org/10.1097/BOT.0000000000000704

    Article  PubMed  Google Scholar 

  41. Ogden WS, Rendall J (1978) Fractures beneath hip prostheses: a special indication for Parham bands and plating. Orthop Trans 2:70

    Google Scholar 

  42. Lenz M, Stoffel K, Gueorguiev B, Klos K, Kielstein H, Hofmann GO (2016) Enhancing fixation strength in periprosthetic femur fractures by orthogonal plating-a biomechanical study. J Orthop Res 34:591–596. https://doi.org/10.1002/jor.23065

    Article  PubMed  Google Scholar 

  43. Moazen M, Mak JH, Etchels LW, Jin Z, Wilcox RK, Jones AC, Tsiridis E (2014) Periprosthetic femoral fracture--a biomechanical comparison between Vancouver type B1 and B2 fixation methods. J Arthroplast 29:495–500. https://doi.org/10.1016/j.arth.2013.08.010

    Article  Google Scholar 

  44. Fulkerson E, Koval K, Preston CF, Iesaka K, Kummer FJ, Egol KA (2006) Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems: a biomechanical comparison of locked plating and conventional cable plates. J Orthop Trauma 20:89–93. https://doi.org/10.1097/01.bot.0000199119.38359.96

    Article  PubMed  Google Scholar 

  45. Fulkerson E, Egol KA, Kubiak EN, Liporace F, Kummer FJ, Koval KJ (2006) Fixation of diaphyseal fractures with a segmental defect: a biomechanical comparison of locked and conventional plating techniques. J Trauma 60:830–835. https://doi.org/10.1097/01.ta.0000195462.53525.0c

    Article  PubMed  Google Scholar 

  46. Zdero R, Walker R, Waddell JP, Schemitsch EH (2008) Biomechanical evaluation of periprosthetic femoral fracture fixation. J Bone Joint Surg Am 90:1068–1077. https://doi.org/10.2106/JBJS.F.01561

    Article  PubMed  Google Scholar 

  47. Lindahl H, Malchau H, Oden A, Garellick G (2006) Risk factors for failure after treatment of a periprosthetic fracture of the femur. J Bone Joint Surg (Br) 88:26–30. https://doi.org/10.1302/0301-620X.88B1.17029

    Article  CAS  Google Scholar 

  48. Agarwal A (2019) Fibular donor site following non vascularized harvest: clinico-radiological outcome at minimal five year follow-up. Int Orthop 43:1927–1931. https://doi.org/10.1007/s00264-018-4086-5

    Article  PubMed  Google Scholar 

  49. Nassr A, Khan MH, Ali MH, Espiritu MT, Hanks SE, Lee JY, Donaldson WF, Kang JD (2009) Donor-site complications of autogenous nonvascularized fibula strut graft harvest for anterior cervical corpectomy and fusion surgery: experience with 163 consecutive cases. Spine J 9:893–898. https://doi.org/10.1016/j.spinee.2009.04.020

    Article  PubMed  Google Scholar 

  50. Owen H, Brady DSG, Masri BA, Duncan CP (1999) The treatment of periprosthetic fractures of the femur using cortical onlay allograft struts. Orthop Clin N Am 30:2

    Google Scholar 

  51. Pala E, Trovarelli G, Calabro T, Angelini A, Abati CN, Ruggieri P (2015) Survival of modern knee tumor megaprostheses: failures, functional results, and a comparative statistical analysis. Clin Orthop Relat Res 473:891–899. https://doi.org/10.1007/s11999-014-3699-2

    Article  PubMed  Google Scholar 

  52. Sevelda F, Schuh R, Hofstaetter JG, Schinhan M, Windhager R, Funovics PT (2015) Total femur replacement after tumor resection: limb salvage usually achieved but complications and failures are common. Clin Orthop Relat Res 473:2079–2087. https://doi.org/10.1007/s11999-015-4282-1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Capanna R, Scoccianti G, Frenos F, Vilardi A, Beltrami G, Campanacci DA (2015) What was the survival of megaprostheses in lower limb reconstructions after tumor resections? Clin Orthop Relat Res 473:820–830. https://doi.org/10.1007/s11999-014-3736-1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Yıldız.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical review committee statement

This retrospective study was approved by the institutional review board (45446446-010.99-5866).

A statement of the location where the work was performed

Patients who were reconstructed with fibular autograft were applied in Bezmialem Vakif University Hospital, and patients who were reconstructed with cortical allograft were applied in Acibadem Maslak Hospital.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncay, İ., Tözün, R., Aliyev, O. et al. Onlay fibula autografting technique and its comparison with cortical allograft for the reconstruction of periprosthetic bone defects around the femur. International Orthopaedics (SICOT) 45, 71–81 (2021). https://doi.org/10.1007/s00264-020-04876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04876-4

Keywords

Navigation