Skip to main content

Advertisement

Log in

Soft tissue micro-circulation in the healthy hindfoot: a cross-sectional study with focus on lateral surgical approaches to the calcaneus

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Open reduction and internal fixation (ORIF) using an extended lateral approach combined with plate osteosynthesis represents the current gold standard in calcaneal fracture treatment, but it is associated with a wound complication rate of up to 30%. Literature suggests that micro-circulation is one of the key factors for sufficient wound healing. The aim of this study was to evaluate soft tissue micro-circulation of the hindfoot in healthy volunteers to determine influencing factors and to identify hypoxic or hypoperfused areas in non-trauma situations, with special attention to surgical approaches.

Methods

Micro-circulation of the lateral hindfoot of 125 participants was non-invasively measured at 2 and 8 mm depths, utilizing a Micro-Lightguide O2C® spectrophotometer. Blood flow (BF [AU]) and oxygen saturation (SO2 [%]) of ten measurement points (MPs) were documented. Demographic factors (age, gender, body mass index [BMI], systolic/diastolic blood pressure, smoking, and pack-years) and regional differences with special regard to surgical approaches (extended lateral approach, Palmer approach, Ollier approach, and a self-modified extended lateral approach) were analyzed.

Results

The SO2 assessments at 2- and 8-mm depths revealed higher values in males (p = 0.043; p = 0.025). There was a correlation between higher age and lower 2 mm BF (p = 0.044). Smoking history and number of pack-years did not predict micro-circulation. BF at the 2 mm depth was highest in the regions of Palmer and Ollier approach (p < 0.001). The MP at the distal calcaneal tuberosity showed significantly higher values regarding all parameters (SO2 (2 mm), p < 0.001; SO2 (8 mm), p = 0.001; BF (2 mm), p < 0.001; BF (8 mm), p < 0.001), compared to the surrounding area.

Conclusions

In non-trauma situations, young males were associated with better micro-circulatory supply of the lateral hindfoot. There was a trend for higher blood flow in regions of the Palmer and Ollier approach. The distal calcaneal tuberosity was clearly superior in all micro-circulatory parameters when compared to the surrounding area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mitchell MJ, McKinley JC, Robinson CM (2009) The epidemiology of calcaneal fractures. Foot (Edinb) 19(4):197–200. https://doi.org/10.1016/j.foot.2009.05.001

    Article  CAS  Google Scholar 

  2. Böhler L (1931) Diagnosis, pathology, and treatment of fractures of the os calcis. J Bone Joint Surg Am 13:75–89

    Google Scholar 

  3. Essex-Lopresti P (1952) The mechanism, reduction technique, and results in fractures of the os calcis. Br J Surg 39(157):395–419

    Article  CAS  Google Scholar 

  4. Palmer I (1948) The mechanism and treatment of fractures of the calcaneus. J Bone Joint Surg Am 30:2–8

    Article  Google Scholar 

  5. Sanders R, Fortin P, DiPasquale T, Walling A (1993) Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin Orthop Relat Res (290):87–95

  6. Zwipp H, Tscherne H, Wülker N, Grote R (1989) Intra-articular fracture of the calcaneus. Classification, assessment and surgical procedures. Unfallchirurgie 92(3):117–129

    CAS  Google Scholar 

  7. Dhillon MS, Bali K, Prabhakar S (2011) Controversies in calcaneus fracture management: a systematic review of the literature. Musculoskelet Surg 95(3):171–181. https://doi.org/10.1007/s12306-011-0114-y

    Article  PubMed  Google Scholar 

  8. Buckley R, Tough S, McCormack R et al (2002) Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospective, randomized, controlled multicenter trial. J Bone Joint Surg Am 84-A(10):1733–1744

    Article  Google Scholar 

  9. Gougoulias N, Khanna A, McBride DJ, Maffulli N (2009) Management of calcaneal fractures: systematic review of randomized trials. Br Med Bull 92(1):153–167. https://doi.org/10.1093/bmb/ldp030

    Article  PubMed  Google Scholar 

  10. DeWall M (2010) Percutaneous reduction and fixation of displaced intra-articular calcaneus fractures. J Orthop Trauma 24(8):466–472. https://doi.org/10.1097/BOT.0b013e3181defd74

    Article  PubMed  Google Scholar 

  11. Rammelt S, Zwipp H (2014) Fractures of the calcaneus: current treatment strategies. Acta Chir Orthop Traumatol Cechoslov 81(3):177–196

    CAS  Google Scholar 

  12. Pastor T, Gradl G, Klos K et al (2016) Displaced intra-articular calcaneal fractures: is there a consensus on treatment in Germany? Int Orthop 40(10):2181–2190. https://doi.org/10.1007/s00264-016-3134-2

    Article  PubMed  Google Scholar 

  13. Benirschke SK, Kramer PA (2004) Wound healing complications in closed and open calcaneal fractures. J Orthop Trauma 18(1):1–6

    Article  Google Scholar 

  14. Court-Brown CM, Charles M, Schmidt M, Schutte BG (2009) Factors affecting infection after calcaneal fracture fixation. Injury 40(12):1313–1315. https://doi.org/10.1016/j.injury.2009.03.044

    Article  PubMed  Google Scholar 

  15. Folk JW, Starr AJ, Early JS (1999) Early wound complications of operative treatment of calcaneus fractures: analysis of 190 fractures. J Orthop Trauma 13(5):369–372

    Article  CAS  Google Scholar 

  16. Harvey EJ, Grujic L, Early JS et al (2001) Morbidity associated with ORIF of intra-articular calcaneus fractures using a lateral approach. Foot Ankle Int 22(11):868–873

    Article  CAS  Google Scholar 

  17. Howard JL, Buckley R, McCormack R et al (2003) Complications following management of displaced intra-articular calcaneal fractures: a prospective randomized trial comparing open reduction internal fixation with nonoperative management. J Orthop Trauma 17(4):241–249

    Article  CAS  Google Scholar 

  18. Poeze M, Verbruggen JP, Brink PR (2008) The relationship between the outcome of operatively treated calcaneal fractures and institutional fracture load: a systematic review of the literature. J Bone Joint Surg Am 90(5):1013–1021. https://doi.org/10.2106/JBJS.G.00604

    Article  PubMed  Google Scholar 

  19. Palmer I (1948) The mechanism and treatment of fractures of the calcaneus: open reduction with the use of cancellous grafts. J Bone Joint Surg Am 30(1):2–8

    Article  Google Scholar 

  20. Letournel E (1993) Open treatment of acute calcaneal fractures. Clin Orthop Relat Res (290):60–67

  21. Zwipp H, Tscherne H, Thermann H, Weber T (1993) Osteosynthesis of displaced intraarticular fractures of the calcaneus results in 123 cases. Clin Orthop Relat Res 290:76–86

    Google Scholar 

  22. Schepers T, Kieboom BC, Bessems GH et al (2010) Subtalar versus triple arthrodesis after intra-articular calcaneal fractures. Strategies Trauma Limb Reconstr 5(2):97–103. https://doi.org/10.1007/s11751-010-0084-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burdeaux BD (1983) Reduction of calcaneal fractures by the McReynolds medial approach technique and its experimental basis. Clin Orthop Relat Res 177:87–103

    Google Scholar 

  24. Gupta A, Ghalambor N, Nihal A, Trepman E (2003) The modified palmer lateral approach for calcaneal fractures: wound healing and postoperative computed tomographic evaluation of fracture reduction. Foot Ankle Int 24(10):744–753

    Article  Google Scholar 

  25. Abidi NA, Dhawan S, Gruen GS et al (1998) Wound-healing risk factors after open reduction and internal fixation of calcaneal fractures. Foot Ankle Int 19(12):856–861

    Article  CAS  Google Scholar 

  26. Koski A, Kuokkanen H, Tukiainen E (2005) Postoperative wound complications after internal fixation of closed calcaneal fractures: a retrospective analysis of 126 consecutive patients with 148 fractures. Scand J Surg 94(3):243–245

    Article  CAS  Google Scholar 

  27. Rammelt S, Barthel S, Biewener A et al (2003) Calcaneus fractures. Open reduction and internal fixation. Zentralbl Chir 128(6):517–528. https://doi.org/10.1055/s-2003-40627

    Article  CAS  PubMed  Google Scholar 

  28. Harrison DK (2003) Optical measurements of tissue oxygen saturation in lower limb wound healing. In: Thorniley M, Harrison DK, James PE (eds) Oxygen transport to tissue XXV. Adv Exp Med Biol 540:265–269. https://doi.org/10.1007/978-1-4757-6125-2_37

    Google Scholar 

  29. Ambrózy E, Waczuliková I, Willfort A et al (2013) Healing process of venous ulcers: the role of microcirculation. Int Wound J 10(1):57–64. https://doi.org/10.1111/j.1742-481X.2012.00943.x

    Article  PubMed  Google Scholar 

  30. Zwipp H, Rammelt S, Barthel S (2004) Calcaneal fractures—open reduction and internal fixation (ORIF). Injury 35((2):46–54. https://doi.org/10.1016/j.injury.2004.07.011

    Article  Google Scholar 

  31. Kösters AK, Ganse B, Gueorguiev B et al (2017) Effects of low-intensity pulsed ultrasound on soft tissue micro-circulation in the foot. Int Orthop 22:1–8. https://doi.org/10.1007/s00264-017-3574-3

    Article  Google Scholar 

  32. de Smet GHJ, Kroese LF, Menon AG et al (2017) Oxygen therapies and their effects on wound healing. Wound Repair Regen. https://doi.org/10.1111/wrr.12561

    Article  Google Scholar 

  33. Beckert S, Witte MB, Königsrainer A, Coerper S (2004) The impact of the micro-lightguide O2C for the quantification of tissue ischemia in diabetic foot ulcers. Diabetes Care 27(12):2863–2867

    Article  Google Scholar 

  34. Forst T, Hohberg C, Tarakci E et al (2008) Reliability of lightguide spectrophotometry (O2C®) for the investigation of skin tissue microvascular blood flow and tissue oxygen supply in diabetic and nondiabetic subjects. J Diabetes Sci Technol 2(6):1151–1156

    Article  Google Scholar 

  35. Harrison DK, McCollum PT, Newton DJ et al (1995) Amputation level assessment using lightguide spectrophotometry. Prosthetics Orthot Int 19(3):139–147

    CAS  Google Scholar 

  36. Jørgensen LP, Schroeder TV (2012) Micro-lightguide spectrophotometry for tissue perfusion in ischemic limbs. J Vasc Surg 56(3):746–752. https://doi.org/10.1016/j.jvs.2012.02.068

    Article  PubMed  Google Scholar 

  37. Merz KM, Pfau M, Blumenstock G et al (2010) Cutaneous microcirculatory assessment of the burn wound is associated with depth of injury and predicts healing time. Burns 36(4):477–482. https://doi.org/10.1016/j.burns.2009.06.195

    Article  CAS  PubMed  Google Scholar 

  38. Mücke T, Rau A, Merezas A et al (2014) Identification of perioperative risk factor by laser-doppler spectroscopy after free flap perfusion in the head and neck: a prospective clinical study. Microsurgery 34(5):345–351. https://doi.org/10.1002/micr.22206

    Article  PubMed  Google Scholar 

  39. Gardner AW, Montgomery PS, Blevins SM et al (2010) Gender and ethnic differences in arterial compliance in patients with intermittent claudication. J Vasc Surg 51(3):610–615. https://doi.org/10.1016/j.jvs.2009.09.059

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kao WL, Sun CW (2015) Gender-related effect in oxygenation dynamics by using far-infrared intervention with near-infrared spectroscopy measurement: a gender differences controlled trial. PLoS One 10(11):e0135166. https://doi.org/10.1371/journal.pone.0135166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forstmeier V, Sorg H, Kabbani M et al (2015) Evaluation of cutaneous microcirculation at the dorsum of the hand within different age groups—implications for wound healing in hand surgery? Handchir Mikrochir Plast Chir 47(6):384–388. https://doi.org/10.1055/s-0035-1555868

    Article  CAS  PubMed  Google Scholar 

  42. Park DH, Hwang JW, Jang KS et al (1997) Mapping of the human body skin with laser Doppler flowmetry. Ann Plast Surg 39(6):597–602

    Article  CAS  Google Scholar 

  43. Bentov I, Reed MJ (2015) The effect of aging on the cutaneous microvasculature. Microvasc Res 100:25–31. https://doi.org/10.1016/j.mvr.2015.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  44. Klos K, Simons P, Mückley T et al (2017) Fractures of the ankle joint in elderly patients. Unfallchirurgie. https://doi.org/10.1007/s00113-017-0423-1

    Article  Google Scholar 

  45. Karich B, Klos K, Simons P et al (2017) Minimally invasive osteosynthesis after ankle fractures in geriatric patients : surgical technique with the aid of headless full thread screws. Unfallchirurgie. https://doi.org/10.1007/s00113-017-0422-2

    Article  Google Scholar 

  46. Sørensen LT (2012) Wound healing and infection in surgery: the clinical impact of smoking and smoking cessation: a systematic review and meta-analysis. Arch Surg 147(4):373–383. https://doi.org/10.1001/archsurg.2012.5

    Article  PubMed  Google Scholar 

  47. Zhang W, Chen E, Xue D et al (2015) Risk factors for wound complications of closed calcaneal fractures after surgery: a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med 23(1):18. https://doi.org/10.1186/s13049-015-0092-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. Woo S, Bae S, Chung HJ et al (2017) Radiologic and clinical outcomes of Ollier approach with screw fixation for displaced intra-articular calcaneal fractures—comparative study with extensile lateral approach with lateral plating. Foot & Ankle Orthopaedics 2(3):2473011417S0004. https://doi.org/10.1177/2473011417S000412

    Article  Google Scholar 

  49. Freeman BJ, Duff S, Allen PE et al (1998) The extended lateral approach to the hindfoot. Anatomical basis and surgical implications. J Bone Joint Surg Br 80(1):139–142

    Article  CAS  Google Scholar 

  50. Bibbo C, Ehrlich DA, Nguyen HM et al (2014) Low wound complication rates for the lateral extensile approach for calcaneal ORIF when the lateral calcaneal artery is patent. Foot Ankle Int 35(7):650–656. https://doi.org/10.1177/1071100714534654

    Article  PubMed  Google Scholar 

  51. Borrelli J Jr, Lashgari C (1999) Vascularity of the lateral calcaneal flap: a cadaveric injection study. J Orthop Trauma 13(2):73–77

    Article  Google Scholar 

  52. Ganse B, Pishnamaz M, Kobbe P et al (2017) Microcirculation in open vs. minimally invasive dorsal stabilization of thoracolumbar fractures. PLoS One 12(11):e0188115. https://doi.org/10.1371/journal.pone.0188115 eCollection 2017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Knobe.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics committee of the RWTH Aachen University Hospital, ethics approval EK 346/14.

Informed consent

Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with the ethical principles of research, and that informed consent for participation in the study was obtained.

Ethics

EK 346/14

Electronic supplementary material

ESM 1

(XLS 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carow, J.B., Carow, J., Gueorguiev, B. et al. Soft tissue micro-circulation in the healthy hindfoot: a cross-sectional study with focus on lateral surgical approaches to the calcaneus. International Orthopaedics (SICOT) 42, 2705–2713 (2018). https://doi.org/10.1007/s00264-018-4031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-018-4031-7

Keywords

Navigation