Skip to main content

Advertisement

Log in

Statins abrogate gemcitabine-induced PD-L1 expression in pancreatic cancer-associated fibroblasts and cancer cells with improved therapeutic outcome

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A combination of chemotherapy with immunotherapy has been proposed to have better clinical outcomes in Pancreatic Ductal Adenocarcinoma (PDAC). On the other hand, chemotherapeutics is known to have certain unwanted effects on the tumor microenvironment that may mask the expected beneficial effects of immunotherapy. Here, we have investigated the effect of gemcitabine (GEM), on two immune checkpoint proteins (PD-L1 and PD-L2) expression in cancer associated fibroblasts (CAFs) and pancreatic cancer cells (PCCs). Findings of in vitro studies conducted by using in-culture activated mouse pancreatic stellate cells (mPSCs) and human PDAC patients derived CAFs demonstrated that GEM significantly induces PD-L1 and PD-L2 expression in these cells. Moreover, GEM induced phosphorylation of STAT1 and production of multiple known PD-L1-inducing secretory proteins including IFN-γ in CAFs. Upregulation of PD-L1 in PSCs/CAFs upon GEM treatment caused T cell inactivation and apoptosis in vitro. Importantly, Statins suppressed GEM-induced PD-L1 expression both in CAFs and PCCs while abrogating the inactivation of T-cells caused by GEM-treated PSCs/CAFs. Finally, in an immunocompetent syngeneic orthotopic mouse pancreatic tumor model, simvastatin and GEM combination therapy significantly reduced intra-tumor PD-L1 expression and noticeably reduced the overall tumor burden and metastasis incidence. Together, the findings of this study have provided experimental evidence that illustrates potential unwanted side effects of GEM that could hamper the effectiveness of this drug as mono and/or combination therapy. At the same time the findings also suggest use of statins along with GEM will help in overcoming these shortcomings and warrant further clinical investigation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data are available in the main text and the reagents used are mentioned in the text and supplementary Material. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL et al (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  2. Rahib L et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921

    Article  CAS  PubMed  Google Scholar 

  3. Sawada M et al (2020) Modified FOLFIRINOX as a second-line therapy following gemcitabine plus nab-paclitaxel therapy in metastatic pancreatic cancer. BMC Cancer 20(1):1–9

    Article  Google Scholar 

  4. Citterio C et al (2018) Second-line chemotherapy for the treatment of metastatic pancreatic cancer after first-line gemcitabine-based chemotherapy: a network meta-analysis. Oncotarget 9(51):29801

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bear AS, Vonderheide RH, O’Hara MH (2020) Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 38(6):788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kershaw MH et al (2013) Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncoimmunology 2(9):e25962

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gandhi L et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378(22):2078–2092

    Article  CAS  PubMed  Google Scholar 

  8. Mortezaee K (2021) Enriched cancer stem cells, dense stroma, and cold immunity: interrelated events in pancreatic cancer. J Biochem Mol Toxicol 35(4):e22708

    Article  CAS  PubMed  Google Scholar 

  9. Ajina R, Weiner LM (2020) T-cell immunity in pancreatic cancer. Pancreas 49(8):1014–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61

    Article  CAS  PubMed  Google Scholar 

  11. Gorchs L et al (2019) Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4(+) and CD8(+) T-cells. Front Immunol 10:847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doi T et al (2017) The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep 37(3):1545–1554

    Article  CAS  PubMed  Google Scholar 

  13. Azad A et al (2017) PD-L1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy. EMBO Mol Med 9(2):167–180

    Article  CAS  PubMed  Google Scholar 

  14. Roux C et al (2019) Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc Natl Acad Sci U S A 116(10):4326–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heinemann V (2001) Gemcitabine: progress in the treatment of pancreatic cancer. Oncology 60(1):8–18

    Article  CAS  PubMed  Google Scholar 

  16. Tao L et al (2016) Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep 6:38408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhai J et al (2019) Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer. Cancer Lett 454:37–43

    Article  CAS  PubMed  Google Scholar 

  18. Richards KE et al (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36(13):1770–1778

    Article  CAS  PubMed  Google Scholar 

  19. Suklabaidya S, Dash P, Senapati S (2017) Pancreatic fibroblast exosomes regulate survival of cancer cells. Oncogene 36(25):3648–3649

    Article  CAS  PubMed  Google Scholar 

  20. Toste PA et al (2016) Chemotherapy-induced inflammatory gene signature and protumorigenic phenotype in pancreatic CAFs via stress-associated MAPK. Mol Cancer Res 14(5):437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bulle A et al (2020) Gemcitabine recruits M2-type tumor-associated macrophages into the stroma of pancreatic cancer. Transl Oncol 13(3):100743

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lim WJ et al (2021) Statins decrease programmed death-ligand 1 (PD-L1) by inhibiting AKT and β-catenin signaling. Cells 10(9)

  23. Kwon M et al (2021) Statin in combination with cisplatin makes favorable tumor-immune microenvironment for immunotherapy of head and neck squamous cell carcinoma. Cancer Lett 522:198–210

    Article  CAS  PubMed  Google Scholar 

  24. Torres MP et al (2013) Novel pancreatic cancer cell lines derived from genetically engineered mouse models of spontaneous pancreatic adenocarcinoma: applications in diagnosis and therapy. PLoS ONE 8(11):e80580

    Article  PubMed  PubMed Central  Google Scholar 

  25. Suresh V et al (2022) MIF confers survival advantage to pancreatic CAFs by suppressing interferon pathway-induced p53-dependent apoptosis. FASEB J 36(8):e22449

    Article  CAS  PubMed  Google Scholar 

  26. Suklabaidya S et al (2016) Characterization and use of HapT1-derived homologous tumors as a preclinical model to evaluate therapeutic efficacy of drugs against pancreatic tumor desmoplasia. Oncotarget 7(27):41825–41842

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mohapatra D et al (2022) Fluvastatin sensitizes pancreatic cancer cells toward radiation therapy and suppresses radiation- and/or TGF-β-induced tumor-associated fibrosis. Lab Invest 102(3):298–311

    Article  CAS  PubMed  Google Scholar 

  28. Helms EJ et al (2022) Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer–associated fibroblasts. Cancer Discov 12(2):484–501

    Article  CAS  PubMed  Google Scholar 

  29. Yearley JH et al (2017) PD-L2 expression in human tumors: relevance to Anti-PD-1 therapy in cancer. Clin Cancer Res 23(12):3158–3167

    Article  CAS  PubMed  Google Scholar 

  30. Yoshikawa K et al (2021) Prognostic significance of PD-L1-positive cancer-associated fibroblasts in patients with triple-negative breast cancer. BMC Cancer 21(1):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebine K et al (2018) Interplay between interferon regulatory factor 1 and BRD4 in the regulation of PD-L1 in pancreatic stellate cells. Sci Rep 8(1):13225

    Article  PubMed  PubMed Central  Google Scholar 

  32. Iwaisako K et al (2014) Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 111(32):E3297–E3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Helms EJ et al (2022) Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov 12(2):484–501

    Article  CAS  PubMed  Google Scholar 

  34. Choe EJ et al. (2022) Atorvastatin enhances the efficacy of immune checkpoint therapy and suppresses the cellular and extracellular vesicle PD-L1. Pharmaceutics. 14(8)

  35. Minz AP et al (2022) Gemcitabine induces polarization of mouse peritoneal macrophages towards M1-like and confers antitumor property by inducing ROS production. Clin Exp Metastasis 39(5):783–800

    Article  CAS  PubMed  Google Scholar 

  36. Khan MA et al (2015) Gemcitabine triggers angiogenesis-promoting molecular signals in pancreatic cancer cells: therapeutic implications. Oncotarget 6(36):39140–39150

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kato H et al (2011) CCK-2/gastrin receptor signaling pathway is significant for gemcitabine-induced gene expression of VEGF in pancreatic carcinoma cells. Life Sci 89(17–18):603–608

    Article  CAS  PubMed  Google Scholar 

  38. Hartley G et al (2017) Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-α. Cancer Immunol Immunother 66(4):523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang X et al (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ma YF et al (2017) Targeting of interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer. Oncotarget 8(5):7614–7624

    Article  PubMed  Google Scholar 

  41. Antonangeli F et al (2020) Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol 11:584626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang GQ et al (2021) Interleukin 6 regulates the expression of programmed cell death ligand 1 in thyroid cancer. Cancer Sci 112(3):997–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ju X et al (2020) Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-ɑ signaling. Exp Cell Res 396(2):112315

    Article  CAS  PubMed  Google Scholar 

  44. Chan LC et al (2019) IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J Clin Invest 129(8):3324–3338

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bertrand F et al (2017) TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun 8(1):2256

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pistillo MP et al (2020) IFN-γ upregulates membranous and soluble PD-L1 in mesothelioma cells: potential implications for the clinical response to PD-1/PD-L1 blockade. Cell Mol Immunol 17(4):410–411

    Article  CAS  PubMed  Google Scholar 

  47. Thiem A et al (2019) IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res 38(1):397

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moon JW et al (2017) IFNγ induces PD-L1 overexpression by JAK2/STAT1/IRF-1 signaling in EBV-positive gastric carcinoma. Sci Rep 7(1):17810

    Article  PubMed  PubMed Central  Google Scholar 

  49. Beswick EJ et al (2014) TLR4 activation enhances the PD-L1-mediated tolerogenic capacity of colonic CD90+ stromal cells. J Immunol 193(5):2218–2229

    Article  CAS  PubMed  Google Scholar 

  50. Huang H et al (2022) Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40(6):656-673.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ene-Obong A et al (2013) Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 145(5):1121–1132

    Article  CAS  PubMed  Google Scholar 

  52. Feng R et al. (2023). Cancer-associated fibroblast-derived extracellular vesicles mediate immune escape of bladder cancer via PD-L1/PD-1 expression. Endocr Metab Immune Disord Drug Targets

  53. Poggio M et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(2):414-427.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yin Z et al. (2021) Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: a key role of exosomal PD-L1. J Immunother Cancer. 9(1).

  55. Masamune A et al (2002) Activated rat pancreatic stellate cells express intercellular adhesion molecule-1 (ICAM-1) in vitro. Pancreas 25(1):78–85

    Article  PubMed  Google Scholar 

  56. Zhang W et al (2022) ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression. Dev Cell 57(3):329-343.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mowen K, David M (2000) Regulation of STAT1 nuclear export by Jak1. Mol Cell Biol 20(19):7273–7281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dorand RD, Petrosiute A, Huang AY (2017) Multifactorial regulators of tumor programmed death-ligand 1 (PD-L1) response. Transl Cancer Res 6(Suppl 9):S1451-s1454

    Article  CAS  PubMed  Google Scholar 

  59. Mimura K et al (2018) PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci 109(1):43–53

    Article  CAS  PubMed  Google Scholar 

  60. Chen S et al (2019) Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer 7(1):305

    Article  PubMed  PubMed Central  Google Scholar 

  61. Farrukh H, El-Sayes N, Mossman K (2021) Mechanisms of PD-L1 regulation in malignant and virus-infected cells. Int J Mol Sci. 22(9)

  62. Uemura N et al (2023) Statins exert anti-growth effects by suppressing YAP/TAZ expressions via JNK signal activation and eliminate the immune suppression by downregulating PD-L1 expression in pancreatic cancer. Am J Cancer Res 13(5):2041–2054

    PubMed  PubMed Central  Google Scholar 

  63. Mao W et al. Statin shapes inflamed tumor microenvironment and enhances immune checkpoint blockade in non-small cell lung cancer. JCI Insight, 2022. 7(18)

  64. Yan C et al (2023) Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity. Cancer Cell 41(7):1276-1293.e11

    Article  CAS  PubMed  Google Scholar 

  65. Sun L et al (2022) PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II. Cell Rep 38(6):110349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Audenaerde JRM et al (2017) Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells. Oncotarget 8(34):56968–56979

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mantoni TS et al (2011) Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling. Cancer Res 71(10):3453–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jamil A et al (2019) Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: in-vitro characterization, cellular uptake, and pharmacokinetic studies. Drug Dev Ind Pharm 45(5):745–753

    Article  CAS  PubMed  Google Scholar 

  69. Agarwal P et al (2015) Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol 135(4):1080–1088

    Article  CAS  PubMed  Google Scholar 

  70. Kita T, Brown MS, Goldstein JL (1980) Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest 66(5):1094–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Katano H, Pesnicak L, Cohen JI (2004) Simvastatin induces apoptosis of Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines and delays development of EBV lymphomas. Proc Natl Acad Sci U S A 101(14):4960–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmad T et al (2011) Simvastatin improves epithelial dysfunction and airway hyperresponsiveness: from asymmetric dimethyl-arginine to asthma. Am J Respir Cell Mol Biol 44(4):531–539

    Article  CAS  PubMed  Google Scholar 

  73. Escors D et al (2018) The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  74. Heenatigala Palliyage G et al (2023) Chemotherapy-induced PDL-1 expression in cancer-associated fibroblasts promotes chemoresistance in NSCLC. Lung Cancer 181:107258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.P.Minz is a recipient of Council of Scientific and Industrial Research (CSIR) students research fellowship, Government of India. To create graphical abstract, Biorender.com was used. We are thankful to the support provided by the DBT-ILS core imaging facility and transmission electron microscopy facility. We thank Madan Mohan Mallick, Mr. Sushanta Kumar Swain and Mr. Jajati Ray for their efficient technical support.

Funding

The study is partly supported by Department of Biotechnology (DBT; BT/PR32122/MED/30/2122/2019) Government of India.

Author information

Authors and Affiliations

Authors

Contributions

AM, DM and MD performed most of the experiments. Conception, design, and development of methodology, data interpretation: SS, AM Patient tissue for CAF isolation: PKS Experiments related to animal work: SS, AM, DM, MS, DP, APM, SM Writing, review, and/or revision of the manuscript: SS, AM, DM, MD, MS, DP, APM, SM, SK, PKS Study supervision: SS.

Corresponding author

Correspondence to Shantibhusan Senapati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minz, A.P., Mohapatra, D., Dutta, M. et al. Statins abrogate gemcitabine-induced PD-L1 expression in pancreatic cancer-associated fibroblasts and cancer cells with improved therapeutic outcome. Cancer Immunol Immunother 72, 4261–4278 (2023). https://doi.org/10.1007/s00262-023-03562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03562-9

Keywords

Navigation