Skip to main content

Advertisement

Log in

Immunoscore is a strong predictor of survival in the prognosis of stage II/III gastric cancer patients following 5-FU-based adjuvant chemotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The prognostic impact of Immunoscore (IS) in gastric cancer (GC) patients treated with adjuvant chemotherapy remains unelucidated. We evaluated the CD3 + , CD8 + , and Foxp3 + T-lymphocyte densities in tumor centers and invasive margin regions of 389 patients with surgically resected stage II/III GC who received 5-FU-based adjuvant chemotherapy and investigated the impact of IS on survival. In univariate analysis, high CD3 + , CD8 + , and Foxp3 + T-lymphocyte densities in the invasive margin were correlated with better prognosis (all P < 0.05). Patients with high IS had significantly longer disease-free survival (DFS; P < 0.001) and overall survival (OS; P < 0.001). In multivariate analysis, IS demonstrated a powerful prognostic impact on patient outcome [DFS, hazard ratio (HR) = 0.465; 95% confidence interval (CI), 0.306–0.707, P < 0.001; OS, HR = 0.478; 95% CI, 0.308–0.743, P = 0.001]. Additionally, although all EBV-positive cases had high IS, IS was similar in both microsatellite instability (MSI)-high and microsatellite stable (MSS)/MSI-low groups (83.3% and 80.5%, respectively). Subgroup analysis according to MSI status revealed that high IS patients had significant DFS and OS benefits in both MSS/MSI-low (DFS, HR = 0.527, 95% CI, 0.341–0.816, P = 0.004; OS, HR = 0.528, 95% CI, 0.334–0.837, P = 0.007) and MSI-high (DFS, HR = 0.166, 95% CI, 0.033–0.826, P = 0.028; OS, HR = 0.177, 95% CI, 0.036–0.883, P = 0.035) groups. Thus, the assessment of immune cell infiltration based on IS may provide a strong indicator of survival in stage II/III GC patients with curative resection following 5-FU-based adjuvant chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CT:

Center of tumor

DFS:

Disease-free survival

EBV:

Epstein–Barr virus

GC:

Gastric cancer

HER2:

Human epidermal growth factor receptor 2

IM:

Invasive margin

IS:

Immunoscore

MSI:

Microsatellite instability

MSS:

Microsatellite stable

OS:

Overall survival

PCR:

Polymerase chain reaction

PDL1:

Programmed cell death ligand 1

TIL:

Tumor infiltrating lymphocyte

Treg:

Regulatory T cell

References

  1. Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA et al (2018) Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31(2):214–234. https://doi.org/10.1038/modpathol.2017.156

    Article  CAS  PubMed  Google Scholar 

  2. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C et al (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232(2):199–209. https://doi.org/10.1002/path.4287

    Article  CAS  PubMed  Google Scholar 

  3. Bindea G, Mlecnik B, Angell HK, Galon J (2014) The immune landscape of human tumors: Implications for cancer immunotherapy. Oncoimmunology 3(1):e27456. https://doi.org/10.4161/onci.27456

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24(6):311–335. https://doi.org/10.1097/pap.0000000000000161

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anichini A, Tassi E, Grazia G, Mortarini R (2018) The non-small cell lung cancer immune landscape: emerging complexity, prognostic relevance and prospective significance in the context of immunotherapy. Cancer Immunol Immunother 67(6):1011–1022. https://doi.org/10.1007/s00262-018-2147-7

    Article  CAS  PubMed  Google Scholar 

  6. Tian MX, Zhou YF, Qu WF, Liu WR, Jin L, Jiang XF et al (2019) Histopathology-based immunoscore predicts recurrence for intrahepatic cholangiocarcinoma after hepatectomy. Cancer Immunol Immunother 68(8):1369–1378. https://doi.org/10.1007/s00262-019-02371-3

    Article  CAS  PubMed  Google Scholar 

  7. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol Off Am Soc Clin Oncol 28(1):105–113. https://doi.org/10.1200/jco.2009.23.7370

    Article  CAS  Google Scholar 

  8. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE et al (2013) Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer 109(10):2705–2713. https://doi.org/10.1038/bjc.2013.634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ali HR, Dariush A, Provenzano E, Bardwell H, Abraham JE, Iddawela M et al (2016) Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res 18(1):21. https://doi.org/10.1186/s13058-016-0682-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pruneri G, Gray KP, Vingiani A, Viale G, Curigliano G, Criscitiello C et al (2016) Tumor-infiltrating lymphocytes (TILs) are a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22–00. Breast Cancer Res Treat 158(2):323–331. https://doi.org/10.1007/s10549-016-3863-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sobral-Leite M, Van de Vijver K, Michaut M, van der Linden R, Hooijer GKJ, Horlings HM et al (2018) Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1-like status, tumor-infiltrating immune cells and survival. Oncoimmunology 7(12):e1509820. https://doi.org/10.1080/2162402x.2018.1509820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, NY) 313(5795):1960–1964. https://doi.org/10.1126/science.1129139

    Article  CAS  Google Scholar 

  13. Kwak Y, Koh J, Kim DW, Kang SB, Kim WH, Lee HS (2016) Immunoscore encompassing CD3+ and CD8+ T cell densities in distant metastasis is a robust prognostic marker for advanced colorectal cancer. Oncotarget 7(49):81778–81790. https://doi.org/10.18632/oncotarget.13207

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun G, Dong X, Tang X, Qu H, Zhang H, Zhao E (2019) The prognostic value of immunoscore in patients with colorectal cancer: a systematic review and meta-analysis. Cancer Med 8(1):182–189. https://doi.org/10.1002/cam4.1921

    Article  PubMed  Google Scholar 

  15. Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139. https://doi.org/10.1016/s0140-6736(18)30789-x

    Article  PubMed  Google Scholar 

  16. Jung KW, Won YJ, Kong HJ (2019) Lee ES (2019) Prediction of cancer incidence and Mortality in Korea. Cancer Res Treat 51(2):431–437. https://doi.org/10.4143/crt.2019.139

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coccolini F, Montori G, Ceresoli M, Cima S, Valli MC, Nita GE et al (2016) Advanced gastric cancer: what we know and what we still have to learn. World J Gastroenterol 22(3):1139–1159. https://doi.org/10.3748/wjg.v22.i3.1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang W, Liu K, Guo Q, Cheng J, Shen L, Cao Y et al (2017) Tumor-infiltrating immune cells and prognosis in gastric cancer: a systematic review and meta-analysis. Oncotarget 8(37):62312–62329. https://doi.org/10.18632/oncotarget.17602

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee JS, Won HS, Sun S, Hong JH, Ko YH (2018) Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: a systematic review and meta-analysis. Medicine 97(32):e11769. https://doi.org/10.1097/md.0000000000011769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang BW, Kim JG, Lee IH, Bae HI, Seo AN (2017) Clinical significance of tumor-infiltrating lymphocytes for gastric cancer in the era of immunology. World J Gastrointest Oncol 9(7):293–299. https://doi.org/10.4251/wjgo.v9.i7.293

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kawazoe A, Kuwata T, Kuboki Y, Shitara K, Nagatsuma AK, Aizawa M et al (2017) Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 20(3):407–415. https://doi.org/10.1007/s10120-016-0631-3

    Article  CAS  PubMed  Google Scholar 

  22. Zhang D, He W, Wu C, Tan Y, He Y, Xu B et al (2019) Scoring system for tumor-infiltrating lymphocytes and its prognostic value for gastric cancer. Front Immunol 10:71. https://doi.org/10.3389/fimmu.2019.00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koh J, Ock CY, Kim JW, Nam SK, Kwak Y, Yun S et al (2017) Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 8(16):26356–26367. https://doi.org/10.18632/oncotarget.15465

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matsutani S, Shibutani M, Maeda K, Nagahara H, Fukuoka T, Iseki Y et al (2018) Verification of the methodology for evaluating tumor-infiltrating lymphocytes in colorectal cancer. Oncotarget 9(20):15180–15197. https://doi.org/10.18632/oncotarget.24612

    Article  PubMed  PubMed Central  Google Scholar 

  25. Galon J, Fridman WH, Pages F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67(5):1883–1886. https://doi.org/10.1158/0008-5472.Can-06-4806

    Article  CAS  PubMed  Google Scholar 

  26. Lee HS, Kim WH (2006) Tissue array methods for high-throughput clinicopathologic research. Cancer Res Treat 38(1):1–6. https://doi.org/10.4143/crt.2006.38.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Park Y, Koh J, Kwak Y, Ahn SH, Park DJ, Kim HH et al (2019) Clinicopathologic significance of human leukocyte antigen class I expression in patients with stage II and III gastric cancer. Cancer Immunol Immunother 68(11):1779–1790. https://doi.org/10.1007/s00262-019-02410-z

    Article  CAS  PubMed  Google Scholar 

  28. Wang B, Xu D, Yu X, Ding T, Rao H, Zhan Y et al (2011) Association of intra-tumoral infiltrating macrophages and regulatory T cells is an independent prognostic factor in gastric cancer after radical resection. Ann Surg Oncol 18(9):2585–2593. https://doi.org/10.1245/s10434-011-1609-3

    Article  PubMed  Google Scholar 

  29. Koh J, Nam SK, Roh H, Kim J, Lee BC, Kim JW et al (2019) Somatic mutational profiles of stage II and III gastric cancer according to tumor microenvironment immune type. Genes Chromosom Cancer 58(1):12–22. https://doi.org/10.1002/gcc.22683

    Article  CAS  PubMed  Google Scholar 

  30. Ruschoff J, Dietel M, Baretton G, Arbogast S, Walch A, Monges G et al (2010) HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch 457(3):299–307. https://doi.org/10.1007/s00428-010-0952-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  32. Galon J, Pages F, Marincola FM, Angell HK, Thurin M, Lugli A et al (2012) Cancer classification using the Immunoscore: a worldwide task force. J Transl Med 10:205. https://doi.org/10.1186/1479-5876-10-205

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu X, Zhang Z, Zhao G (2019) Recent advances in the study of regulatory T cells in gastric cancer. Int Immunopharmacol 73:560–567. https://doi.org/10.1016/j.intimp.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  34. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179. https://doi.org/10.1038/srep15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takada K, Kashiwagi S, Goto W, Asano Y, Takahashi K, Takashima T et al (2018) Use of the tumor-infiltrating CD8 to FOXP3 lymphocyte ratio in predicting treatment responses to combination therapy with pertuzumab, trastuzumab, and docetaxel for advanced HER2-positive breast cancer. J Transl Med 16(1):86. https://doi.org/10.1186/s12967-018-1460-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102(51):18538–18543. https://doi.org/10.1073/pnas.0509182102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kashimura S, Saze Z, Terashima M, Soeta N, Ohtani S, Osuka F et al (2012) CD83(+) dendritic cells and Foxp3(+) regulatory T cells in primary lesions and regional lymph nodes are inversely correlated with prognosis of gastric cancer. Gastric Cancer 15(2):144–153. https://doi.org/10.1007/s10120-011-0090-9

    Article  CAS  PubMed  Google Scholar 

  38. Perrone G, Ruffini PA, Catalano V, Spino C, Santini D, Muretto P et al (2008) Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer 44(13):1875–1882. https://doi.org/10.1016/j.ejca.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  39. Kim KJ, Lee KS, Cho HJ, Kim YH, Yang HK, Kim WH et al (2014) Prognostic implications of tumor-infiltrating FoxP3+ regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum Pathol 45(2):285–293. https://doi.org/10.1016/j.humpath.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  40. Feichtenbeiner A, Haas M, Buttner M, Grabenbauer GG, Fietkau R, Distel LV (2014) Critical role of spatial interaction between CD8(+) and Foxp3(+) cells in human gastric cancer: the distance matters. Cancer Immunol Immunother 63(2):111–119. https://doi.org/10.1007/s00262-013-1491-x

    Article  CAS  PubMed  Google Scholar 

  41. Mao FY, Kong H, Zhao YL, Peng LS, Chen W, Zhang JY et al (2017) Increased tumor-infiltrating CD45RA(-)CCR7(-) regulatory T-cell subset with immunosuppressive properties foster gastric cancer progress. Cell Death Dis 8(8):e3002. https://doi.org/10.1038/cddis.2017.388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202–209. https://doi.org/10.1038/nature13480

    Article  CAS  Google Scholar 

  43. Ratti M, Lampis A, Hahne JC, Passalacqua R, Valeri N (2018) Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 75(22):4151–4162. https://doi.org/10.1007/s00018-018-2906-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. An JY, Kim H, Cheong JH, Hyung WJ, Kim H, Noh SH (2012) Microsatellite instability in sporadic gastric cancer: its prognostic role and guidance for 5-FU based chemotherapy after R0 resection. Int J Cancer 131(2):505–511. https://doi.org/10.1002/ijc.26399

    Article  CAS  PubMed  Google Scholar 

  45. Smyth EC, Wotherspoon A, Peckitt C, Gonzalez D, Hulkki-Wilson S, Eltahir Z et al (2017) Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 3(9):1197–1203. https://doi.org/10.1001/jamaoncol.2016.6762

    Article  PubMed  Google Scholar 

  46. Dai C, Geng R, Wang C, Wong A, Qing M, Hu J et al (2016) Concordance of immune checkpoints within tumor immune contexture and their prognostic significance in gastric cancer. Mol Oncol 10(10):1551–1558. https://doi.org/10.1016/j.molonc.2016.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2019R1A2C1086180).

Author information

Authors and Affiliations

Authors

Contributions

SY and JK performed analysis, interpretation of data, and wrote the manuscripts. SKN, YK, and WHK performed experiments and editing the manuscript. SHA, DJP, and HHK were involved in patient inclusion, material collection, and reviewed the manuscript. HSL design, interpretation of data, critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hye Seung Lee.

Ethics declarations

Conflict of interest

All authors report no conflict of interest.

Ethical approval

All human tissue samples for research were anonymously coded and experiments were approved by the institutional review board of Seoul National University Bundang Hospital (IRB No. B-1606/349–308).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Koh, J., Nam, S.K. et al. Immunoscore is a strong predictor of survival in the prognosis of stage II/III gastric cancer patients following 5-FU-based adjuvant chemotherapy. Cancer Immunol Immunother 70, 431–441 (2021). https://doi.org/10.1007/s00262-020-02694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02694-6

Keywords

Navigation