Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, Giles F (2018) Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer. https://doi.org/10.1186/s40425-018-0349-3
Article
PubMed
PubMed Central
Google Scholar
Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355. https://doi.org/10.1126/science.aar4060
CAS
Article
PubMed
PubMed Central
Google Scholar
Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M, Brentjens RJ, Sadelain M (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378(5):449–459. https://doi.org/10.1056/NEJMoa1709919
CAS
Article
PubMed
PubMed Central
Google Scholar
Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Li YF, El-Gamil M, Rosenberg SA (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res: Off J Am Assoc Cancer Res 21(5):1019–1027. https://doi.org/10.1158/1078-0432.CCR-14-2708
CAS
Article
Google Scholar
Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol: Off J Am Soc Clin Oncol 29(7):917–924. https://doi.org/10.1200/JCO.2010.32.2537
Article
Google Scholar
Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD (2015) New strategies in engineering t-cell receptor gene-modified t cells to more effectively target malignancies. Clin Cancer Res: Off J Am Assoc Cancer Res 21(23):5191–5197. https://doi.org/10.1158/1078-0432.CCR-15-0860
CAS
Article
Google Scholar
Schmitt TM, Aggen DH, Ishida-Tsubota K, Ochsenreither S, Kranz DM, Greenberg PD (2017) Generation of higher affinity T cell receptors by antigen-driven differentiation of progenitor T cells in vitro. Nat Biotechnol 35(12):1188–1195. https://doi.org/10.1038/nbt.4004
CAS
Article
PubMed
PubMed Central
Google Scholar
Gomez-Eerland R, Nuijen B, Heemskerk B, van Rooij N, van den Berg JH, Beijnen JH, Uckert W, Kvistborg P, Schumacher TN, Haanen JB, Jorritsma A (2014) Manufacture of gene-modified human T-cells with a memory stem/central memory phenotype. Hum Gene Ther Methods 25(5):277–287. https://doi.org/10.1089/hgtb.2014.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Investig 118(1):294–305. https://doi.org/10.1172/JCI32103
CAS
Article
PubMed
Google Scholar
Kunert A, Obenaus M, Lamers CHJ, Blankenstein T, Debets R (2017) T-cell receptors for clinical therapy: in vitro assessment of toxicity risk. Clin Cancer Res: Off J Am Assoc Cancer Res 23(20):6012–6020. https://doi.org/10.1158/1078-0432.CCR-17-1012
CAS
Article
Google Scholar
Ochsenreither S, Majeti R, Schmitt T, Stirewalt D, Keilholz U, Loeb KR, Wood B, Choi YE, Bleakley M, Warren EH, Hudecek M, Akatsuka Y, Weissman IL, Greenberg PD (2012) Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood 119(23):5492–5501. https://doi.org/10.1182/blood-2011-07-365890
CAS
Article
PubMed
PubMed Central
Google Scholar
Snauwaert S, Vanhee S, Goetgeluk G, Verstichel G, Van Caeneghem Y, Velghe I, Philippe J, Berneman ZN, Plum J, Taghon T, Leclercq G, Thielemans K, Kerre T, Vandekerckhove B (2012) RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia. Haematologica 97(10):1539–1547. https://doi.org/10.3324/haematol.2012.065581
CAS
Article
PubMed
PubMed Central
Google Scholar
Neidert MC, Kowalewski DJ, Silginer M, Kapolou K, Backert L, Freudenmann LK, Peper JK, Marcu A, Wang SS, Walz JS, Wolpert F, Rammensee HG, Henschler R, Lamszus K, Westphal M, Roth P, Regli L, Stevanovic S, Weller M, Eisele G (2018) The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy. Acta Neuropathol 135(6):923–938. https://doi.org/10.1007/s00401-018-1836-9
CAS
Article
PubMed
Google Scholar
Vigneron N, Van den Eynde BJ (2011) Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cell Mol Life Sci:CMLS 68(9):1503–1520. https://doi.org/10.1007/s00018-011-0658-x
CAS
Article
PubMed
Google Scholar
Arsenic R, Braicu EI, Letsch A, Dietel M, Sehouli J, Keilholz U, Ochsenreither S (2015) Cancer-testis antigen cyclin A1 is broadly expressed in ovarian cancer and is associated with prolonged time to tumor progression after platinum-based therapy. BMC Cancer 15:784. https://doi.org/10.1186/s12885-015-1824-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Wolgemuth DJ (2011) Function of the A-type cyclins during gametogenesis and early embryogenesis. Results Probl Cell Differ 53:391–413. https://doi.org/10.1007/978-3-642-19065-0_17
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang R, Morosetti R, Koeffler HP (1997) Characterization of a second human Cyclin A that is highly expressed in testis and in several leukemic cell lines. Can Res 57(5):913–920
CAS
Google Scholar
Liao C, Wang XY, Wei HQ, Li SQ, Merghoub T, Pandolfi PP, Wolgemuth DJ (2001) Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing Cyclin A1. Proc Natl Acad Sci USA 98(12):6853–6858. https://doi.org/10.1073/pnas.121540098
CAS
Article
PubMed
PubMed Central
Google Scholar
Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–175
CAS
PubMed
Google Scholar
Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE, Nielsen M, Peters B (2012) Immune epitope database analysis resource. Nucl Acids Res 40(Web Server issue):W525–W530. https://doi.org/10.1093/nar/gks438
CAS
Article
PubMed
PubMed Central
Google Scholar
Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219. https://doi.org/10.1007/s002510050595
CAS
Article
PubMed
Google Scholar
Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M, Schmid-Horch B, Salih HR, Kanz L, Rammensee HG, Stevanovic S, Stickel JS (2015) Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 29(3):647–659. https://doi.org/10.1038/leu.2014.233
CAS
Article
PubMed
Google Scholar
Kowalewski DJ, Stevanovic S (2013) Biochemical large-scale identification of MHC class I ligands. Methods Mol Biol 960:145–157. https://doi.org/10.1007/978-1-62703-218-6_12
CAS
Article
PubMed
Google Scholar
Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, Salih HR, Rammensee HG, Stevanovic S, Stickel JS (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA 112(2):E166–175. https://doi.org/10.1073/pnas.1416389112
CAS
Article
PubMed
Google Scholar
Nelde A, Kowalewski DJ, Backert L, Schuster H, Werner JO, Klein R, Kohlbacher O, Kanz L, Salih HR, Rammensee HG, Stevanovic S, Walz JS (2018) HLA ligandome analysis of primary chronic lymphocytic leukemia (CLL) cells under lenalidomide treatment confirms the suitability of lenalidomide for combination with T-cell-based immunotherapy. Oncoimmunology 7(4):e1316438. https://doi.org/10.1080/2162402X.2017.1316438
Article
PubMed
PubMed Central
Google Scholar
Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989. https://doi.org/10.1016/1044-0305(94)80016-2
CAS
Article
PubMed
Google Scholar
Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925. https://doi.org/10.1038/nmeth1113
CAS
Article
PubMed
Google Scholar
Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8(1):33. https://doi.org/10.1186/s13073-016-0288-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310(1–2):40–52. https://doi.org/10.1016/j.jim.2005.11.023
CAS
Article
PubMed
Google Scholar
Stanke J, Hoffmann C, Erben U, von Keyserling H, Stevanovic S, Cichon G, Schneider A, Kaufmann AM (2010) A flow cytometry-based assay to assess minute frequencies of CD8+ T cells by their cytolytic function. J Immunol Methods 360(1–2):56–65. https://doi.org/10.1016/j.jim.2010.06.005
CAS
Article
PubMed
Google Scholar
Reinherz EL (2015) alphabeta TCR-mediated recognition: relevance to tumor-antigen discovery and cancer immunotherapy. Cancer Immunol Res 3(4):305–312. https://doi.org/10.1158/2326-6066.CIR-15-0042
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu Z, Wang J, Wan Y, Zhu L, Ren X, Qiu S, Ren Y, Yuan S, Ding X, Chen J, Qiu C, Sun J, Zhang X, Xiang J, Qiu C, Xu J (2014) Boosting functional avidity of CD8+ T cells by vaccinia virus vaccination depends on intrinsic T-cell MyD88 expression but not the inflammatory milieu. J Virol 88(10):5356–5368. https://doi.org/10.1128/JVI.03664-13
CAS
Article
PubMed
PubMed Central
Google Scholar
Engels B, Engelhard VH, Sidney J, Sette A, Binder DC, Liu RB, Kranz DM, Meredith SC, Rowley DA, Schreiber H (2013) Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 23(4):516–526. https://doi.org/10.1016/j.ccr.2013.03.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmidt J, Neumann-Haefelin C, Altay T, Gostick E, Price DA, Lohmann V, Blum HE, Thimme R (2011) Immunodominance of HLA-A2-restricted hepatitis C virus-specific CD8+ T cell responses is linked to naive-precursor frequency. J Virol 85(10):5232–5236. https://doi.org/10.1128/JVI.00093-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Ochsenreither S, Fusi A, Geikowski A, Stather D, Busse A, Stroux A, Letsch A, Keilholz U (2012) Wilms' tumor protein 1 (WT1) peptide vaccination in AML patients: predominant TCR CDR3beta sequence associated with remission in one patient is detectable in other vaccinated patients. Cancer Immunol Immunother: CII 61(3):313–322. https://doi.org/10.1007/s00262-011-1099-y
CAS
Article
PubMed
Google Scholar
van Bergen CAM, van der Steen DM, Kester MGD, Koning MT, van Veelen PA, Griffioen M, Falkenburg JHF, Heemskerk MHM, Veelken H, Navarrete MA (2016) Endogenous immunoglobulin-derived neoepitopes are processed and form a sizeable fraction of the HLA class I ligandome of human lymphoma cells. Blood 128(22):914
Article
Google Scholar
Walz S, Stickel JS, Kowalewski DJ, Schuster H, Weisel K, Backert L, Kahn S, Nelde A, Stroh T, Handel M, Kohlbacher O, Kanz L, Salih HR, Rammensee HG, Stevanovic S (2015) The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. Blood 126(10):1203–1213. https://doi.org/10.1182/blood-2015-04-640532
CAS
Article
PubMed
PubMed Central
Google Scholar