Skip to main content

Advertisement

Log in

Immunomodulation by Schwann cells in disease

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Schwann cells are the principal glial cells of the peripheral nervous system which maintain neuronal homeostasis. Schwann cells support peripheral nerve functions and play a critical role in many pathological processes including injury-induced nerve repair, neurodegenerative diseases, infections, neuropathic pain and cancer. Schwann cells are implicated in a wide range of diseases due, in part, to their ability to interact and modulate immune cells. We discuss the accumulating examples of how Schwann cell regulation of the immune system initiates and facilitates the progression of various diseases. Furthermore, we highlight how Schwann cells may orchestrate an immunosuppressive tumor microenvironment by polarizing and modulating the activity of the dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADORA1:

Adenosine A1 receptor

CCL:

C–C motif chemokine ligand

CIDP:

Chronic inflammatory demyelinating polyneuropathy

CXCL:

C–X–C motif chemokine ligand

DC:

Dendritic cell

EAN:

Experimental allergic neuritis

ECM:

Extracellular matrix

Gas6:

Growth arrest-specific protein 6

GBS:

Guillain–Barre syndrome

LFA:

Lymphocyte function-associated antigen

LIF:

Leukemia inhibitory factor

LPC:

Lysophosphatidylcholine

MBP:

Myelin basic protein

MCP-1:

Monocyte chemoattractant protein-1

MDSC:

Myeloid-derived suppressor cell

MIP:

Macrophage inflammatory protein

Nox1:

NADPH oxidase 1

P0:

Myelin protein zero

P2RX:

P2X purinoceptor

PLA2 :

Phospholipase A2

PMP-22:

Peripheral myelin protein 22

PNI:

Perineural invasion

PNS:

Peripheral nervous system

RAGE:

Receptor for advanced glycation end products

SAPP:

Spontaneous autoimmune peripheral polyneuropathy

SC:

Schwann cell

TµE:

Tumor microenvironment

TRPA1:

Transient receptor potential ankyrin 1

References

  1. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531. https://doi.org/10.1113/JP270874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S (2013) The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis 55:95–103. https://doi.org/10.1016/j.nbd.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  3. Bunimovich YL, Keskinov AA, Shurin GV, Shurin MR (2017) Schwann cells: a new player in the tumor microenvironment. Cancer Immunol Immunother 66:959–968. https://doi.org/10.1007/s00262-016-1929-z

    Article  CAS  PubMed  Google Scholar 

  4. Demir IE, Tieftrunk E, Schorn S, Saricaoglu OC, Pfitzinger PL, Teller S et al (2016) Activated Schwann cells in pancreatic cancer are linked to analgesia via suppression of spinal astroglia and microglia. Gut 65:1001–1014. https://doi.org/10.1136/gutjnl-2015-309784

    Article  CAS  PubMed  Google Scholar 

  5. Tzekova N, Heinen A, Kury P (2014) Molecules involved in the crosstalk between immune- and peripheral nerve Schwann cells. J Clin Immunol 34(Suppl 1):S86–104. https://doi.org/10.1007/s10875-014-0015-6

    Article  CAS  PubMed  Google Scholar 

  6. Deborde S, Wong RJ (2017) How Schwann cells facilitate cancer progression in nerves. Cell Mol Life Sci 74:4405–4420. https://doi.org/10.1007/s00018-017-2578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martyn GV, Shurin GV, Keskinov AA, Bunimovich YL, Shurin MR (2019) Schwann cells shape the neuro-immune environs and control cancer progression. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-018-02296-3

    Article  PubMed  Google Scholar 

  8. DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE (2015) The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 302:174–203. https://doi.org/10.1016/j.neuroscience.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  9. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110. https://doi.org/10.1186/1742-2094-8-110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee H, Jo EK, Choi SY, Oh SB, Park K, Kim JS et al (2006) Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun 350:742–747. https://doi.org/10.1016/j.bbrc.2006.09.108

    Article  CAS  PubMed  Google Scholar 

  11. Ozaki A, Nagai A, Lee YB, Myong NH, Kim SU (2008) Expression of cytokines and cytokine receptors in human Schwann cells. NeuroReport 19:31–35. https://doi.org/10.1097/WNR.0b013e3282f27e60

    Article  CAS  PubMed  Google Scholar 

  12. Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS (1995) Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 64:850–858

    Article  CAS  Google Scholar 

  13. Stratton JA, Holmes A, Rosin NL, Sinha S, Vohra M, Burma NE et al (2018) macrophages regulate Schwann cell maturation after nerve injury. Cell Rep. 24(2561–2572):e2566. https://doi.org/10.1016/j.celrep.2018.08.004

    Article  CAS  Google Scholar 

  14. Reichert F, Saada A, Rotshenker S (1994) Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. J Neurosci 14:3231–3245

    Article  CAS  Google Scholar 

  15. Saada A, Reichert F, Rotshenker S (1996) Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol 133:159–167. https://doi.org/10.1083/jcb.133.1.159

    Article  CAS  PubMed  Google Scholar 

  16. Armati PJ, Pollard JD, Gatenby P (1990) Rat and human Schwann cells in vitro can synthesize and express MHC molecules. Muscle Nerve 13:106–116. https://doi.org/10.1002/mus.880130204

    Article  CAS  PubMed  Google Scholar 

  17. Samuel NM, Mirsky R, Grange JM, Jessen KR (1987) Expression of major histocompatibility complex class I and class II antigens in human Schwann cell cultures and effects of infection with Mycobacterium leprae. Clin Exp Immunol 68:500–509

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kingston AE, Bergsteinsdottir K, Jessen KR, Van der Meide PH, Colston MJ, Mirsky R (1989) Schwann cells co-cultured with stimulated T cells and antigen express major histocompatibility complex (MHC) class II determinants without interferon-gamma pretreatment: synergistic effects of interferon-gamma and tumor necrosis factor on MHC class II induction. Eur J Immunol 19:177–183. https://doi.org/10.1002/eji.1830190128

    Article  CAS  PubMed  Google Scholar 

  19. Bergsteinsdottir K, Kingston A, Jessen KR (1992) Rat Schwann cells can be induced to express major histocompatibility complex class II molecules in vivo. J Neurocytol 21:382–390

    Article  CAS  Google Scholar 

  20. Tofaris GK, Patterson PH, Jessen KR, Mirsky R (2002) Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci 22:6696–6703. https://doi.org/10.1523/JNEUROSCI.22-15-06696.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stratton JA, Shah PT (2016) Macrophage polarization in nerve injury: do Schwann cells play a role? Neural Regen Res. 11:53–57. https://doi.org/10.4103/1673-5374.175042

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taskinen HS, Roytta M (2000) Increased expression of chemokines (MCP-1, MIP-1alpha, RANTES) after peripheral nerve transection. J Peripher Nerv Syst 5:75–81

    Article  CAS  Google Scholar 

  23. Cattin AL, Burden JJ, Van Emmenis L, Mackenzie FE, Hoving JJ, Garcia Calavia N et al (2015) Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 162:1127–1139. https://doi.org/10.1016/j.cell.2015.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horie H, Kadoya T, Hikawa N, Sango K, Inoue H, Takeshita K et al (2004) Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 24:1873–1880. https://doi.org/10.1523/JNEUROSCI.4483-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kwa MS, van Schaik IN, De Jonge RR, Brand A, Kalaydjieva L, van Belzen N et al (2003) Autoimmunoreactivity to Schwann cells in patients with inflammatory neuropathies. Brain 126:361–375. https://doi.org/10.1093/brain/awg030

    Article  PubMed  Google Scholar 

  26. Aranami T, Yamamura T (2013) Pathogenesis of chronic inflammatory demyelinating polyneuropathy. Nihon Rinsho 71:850–854

    PubMed  Google Scholar 

  27. Armati PJ, Mathey EK (2014) Clinical implications of Schwann cell biology. J Peripher Nerv Syst. 19:14–23. https://doi.org/10.1111/jns5.12057

    Article  PubMed  Google Scholar 

  28. Armati PJ, Pollard JD (1996) Immunology of the Schwann cell. Baillieres Clin Neurol 5:47–64

    CAS  PubMed  Google Scholar 

  29. Csurhes PA, Sullivan AA, Green K, Pender MP, McCombe PA (2005) T cell reactivity to P0, P2, PMP-22, and myelin basic protein in patients with Guillain–Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol Neurosurg Psychiatry 76:1431–1439. https://doi.org/10.1136/jnnp.2004.052282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanvito L, Makowska A, Mahdi-Rogers M, Hadden RD, Peakman M, Gregson N et al (2009) Humoral and cellular immune responses to myelin protein peptides in chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol Neurosurg Psychiatry 80:333–338. https://doi.org/10.1136/jnnp.2008.159798

    Article  CAS  PubMed  Google Scholar 

  31. Mathey EK, Park SB, Hughes RA, Pollard JD, Armati PJ, Barnett MH et al (2015) Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry 86:973–985. https://doi.org/10.1136/jnnp-2014-309697

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jang SY, Yoon BA, Shin YK, Yun SH, Jo YR, Choi YY et al (2017) Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia. 65:1848–1862. https://doi.org/10.1002/glia.23200

    Article  PubMed  Google Scholar 

  33. Yang M, Peyret C, Shi XQ, Siron N, Jang JH, Wu S et al (2015) Evidence from human and animal studies: pathological roles of CD8(+) T cells in autoimmune peripheral neuropathies. Front Immunol. 6:532. https://doi.org/10.3389/fimmu.2015.00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spierings E, de Boer T, Wieles B, Adams LB, Marani E, Ottenhoff TH (2001) Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J Immunol. 166:5883–5888. https://doi.org/10.4049/jimmunol.166.10.5883

    Article  CAS  PubMed  Google Scholar 

  35. Lilje O (2002) The processing and presentation of endogenous and exogenous antigen by Schwann cells in vitro. Cell Mol Life Sci 59:2191–2198

    Article  CAS  Google Scholar 

  36. Wekerle H, Schwab M, Linington C, Meyermann R (1986) Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur J Immunol 16:1551–1557. https://doi.org/10.1002/eji.1830161214

    Article  CAS  PubMed  Google Scholar 

  37. Meyer zu Horste G, Heidenreich H, Mausberg AK, Lehmann HC, ten Asbroek AL, Saavedra JT et al (2010) Mouse Schwann cells activate MHC class I and II restricted T-cell responses, but require external peptide processing for MHC class II presentation. Neurobiol Dis 37:483–490. https://doi.org/10.1016/j.nbd.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  38. Meyer Zu Horste G, Heidenreich H, Lehmann HC, Ferrone S, Hartung HP, Wiendl H et al (2010) Expression of antigen processing and presenting molecules by Schwann cells in inflammatory neuropathies. Glia 58:80–92. https://doi.org/10.1002/glia.20903

    Article  PubMed  Google Scholar 

  39. Duan RS, Jin T, Yang X, Mix E, Adem A, Zhu J (2007) Apolipoprotein E deficiency enhances the antigen-presenting capacity of Schwann cells. Glia. 55:772–776. https://doi.org/10.1002/glia.20498

    Article  PubMed  Google Scholar 

  40. Mao XJ, Zhang XM, Zhang HL, Quezada HC, Mix E, Yang X et al (2010) TNF-alpha receptor 1 deficiency reduces antigen-presenting capacity of Schwann cells and ameliorates experimental autoimmune neuritis in mice. Neurosci Lett 470:19–23. https://doi.org/10.1016/j.neulet.2009.12.045

    Article  CAS  PubMed  Google Scholar 

  41. Pollard JD, Baverstock J, McLeod JG (1987) Class II antigen expression and inflammatory cells in the Guillain–Barre syndrome. Ann Neurol 21:337–341. https://doi.org/10.1002/ana.410210404

    Article  CAS  PubMed  Google Scholar 

  42. Mancardi GL, Cadoni A, Zicca A, Schenone A, Tabaton M, De Martini I et al (1988) HLA-DR Schwann cell reactivity in peripheral neuropathies of different origins. Neurology. 38:848–851. https://doi.org/10.1212/wnl.38.6.848

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell GW, Williams GS, Bosch EP, Hart MN (1991) Class II antigen expression in peripheral neuropathies. J Neurol Sci 102:170–176

    Article  CAS  Google Scholar 

  44. Van Rhijn I, Van den Berg LH, Bosboom WM, Otten HG, Logtenberg T (2000) Expression of accessory molecules for T-cell activation in peripheral nerve of patients with CIDP and vasculitic neuropathy. Brain 123(Pt 10):2020–2029. https://doi.org/10.1093/brain/123.10.2020

    Article  PubMed  Google Scholar 

  45. Im JS, Tapinos N, Chae GT, Illarionov PA, Besra GS, DeVries GH et al (2006) Expression of CD1d molecules by human schwann cells and potential interactions with immunoregulatory invariant NK T cells. J Immunol. 177:5226–5235. https://doi.org/10.4049/jimmunol.177.8.5226

    Article  CAS  PubMed  Google Scholar 

  46. Murata K, Dalakas MC (2000) Expression of the co-stimulatory molecule BB-1, the ligands CTLA-4 and CD28 and their mRNAs in chronic inflammatory demyelinating polyneuropathy. Brain 123(Pt 8):1660–1666. https://doi.org/10.1093/brain/123.8.1660

    Article  PubMed  Google Scholar 

  47. Kiefer R, Dangond F, Mueller M, Toyka KV, Hafler DA, Hartung HP (2000) Enhanced B7 costimulatory molecule expression in inflammatory human sural nerve biopsies. J Neurol Neurosurg Psychiatry 69:362–368. https://doi.org/10.1136/jnnp.69.3.362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allard DE, Wang Y, Li JJ, Conley B, Xu EW, Sailer D et al (2018) Schwann cell-derived periostin promotes autoimmune peripheral polyneuropathy via macrophage recruitment. J Clin Invest. 128:4727–4741. https://doi.org/10.1172/JCI99308

    Article  PubMed  PubMed Central  Google Scholar 

  49. Neal JW, Gasque P (2016) The role of primary infection of Schwann cells in the aetiology of infective inflammatory neuropathies. J Infect 73:402–418. https://doi.org/10.1016/j.jinf.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  50. Serrano-Coll H, Salazar-Pelaez L, Acevedo-Saenz L, Cardona-Castro N (2018) Mycobacterium leprae-induced nerve damage: direct and indirect mechanisms. Pathog Dis. https://doi.org/10.1093/femspd/fty062

    Article  PubMed  Google Scholar 

  51. Fonseca AB, Simon MD, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS et al (2017) The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty. 6:5. https://doi.org/10.1186/s40249-016-0229-3

    Article  PubMed  PubMed Central  Google Scholar 

  52. Park AJ, Rendini T, Martiniuk F, Levis WR (2016) Leprosy as a model to understand cancer immunosurveillance and T cell anergy. J Leukoc Biol 100:47–54. https://doi.org/10.1189/jlb.5RU1215-537RR

    Article  CAS  PubMed  Google Scholar 

  53. Mattos KA, Oliveira VG, D’Avila H, Rodrigues LS, Pinheiro RO, Sarno EN et al (2011) TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: immunoinflammatory platforms associated with bacterial persistence. J Immunol. 187:2548–2558. https://doi.org/10.4049/jimmunol.1101344

    Article  CAS  PubMed  Google Scholar 

  54. Mattos KA, Lara FA, Oliveira VG, Rodrigues LS, D’Avila H, Melo RC et al (2011) Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 13:259–273. https://doi.org/10.1111/j.1462-5822.2010.01533.x

    Article  CAS  PubMed  Google Scholar 

  55. Hartlehnert M, Derksen A, Hagenacker T, Kindermann D, Schafers M, Pawlak M et al (2017) Schwann cells promote post-traumatic nerve inflammation and neuropathic pain through MHC class II. Sci Rep. 7:12518. https://doi.org/10.1038/s41598-017-12744-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S (2010) Macrophage inflammatory protein-1alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1beta up-regulation. Pain 149:305–315. https://doi.org/10.1016/j.pain.2010.02.025

    Article  CAS  PubMed  Google Scholar 

  57. Saika F, Kiguchi N, Kobayashi Y, Fukazawa Y, Kishioka S (2012) CC-chemokine ligand 4/macrophage inflammatory protein-1beta participates in the induction of neuropathic pain after peripheral nerve injury. Eur J Pain 16:1271–1280. https://doi.org/10.1002/j.1532-2149.2012.00146.x

    Article  CAS  PubMed  Google Scholar 

  58. Abdo H, Calvo-Enrique L, Lopez JM, Song J, Zhang MD, Usoskin D et al (2019) Specialized cutaneous Schwann cells initiate pain sensation. Science 365:695–699. https://doi.org/10.1126/science.aax6452

    Article  CAS  PubMed  Google Scholar 

  59. Goncalves NP, Vaegter CB, Andersen H, Ostergaard L, Calcutt NA, Jensen TS (2017) Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol. 13:135–147. https://doi.org/10.1038/nrneurol.2016.201

    Article  CAS  PubMed  Google Scholar 

  60. Yagihashi S, Matsunaga M (1979) Ultrastructural pathology of peripheral nerves in patients with diabetic neuropathy. Tohoku J Exp Med 129:357–366

    Article  CAS  Google Scholar 

  61. Mizisin AP (2014) Mechanisms of diabetic neuropathy: Schwann cells. Handb Clin Neurol. 126:401–428. https://doi.org/10.1016/B978-0-444-53480-4.00029-1

    Article  PubMed  Google Scholar 

  62. Kalichman MW, Powell HC, Mizisin AP (1998) Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol 95:47–56

    Article  CAS  Google Scholar 

  63. Viader A, Sasaki Y, Kim S, Strickland A, Workman CS, Yang K et al (2013) Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 77:886–898. https://doi.org/10.1016/j.neuron.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sbai O, Devi TS, Melone MA, Feron F, Khrestchatisky M, Singh LP et al (2010) RAGE-TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and cytokine secretion. J Cell Sci 123:4332–4339. https://doi.org/10.1242/jcs.074674

    Article  CAS  PubMed  Google Scholar 

  65. Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol. 7:573–583. https://doi.org/10.1038/nrneurol.2011.137

    Article  CAS  PubMed  Google Scholar 

  66. Herder C, Lankisch M, Ziegler D, Rathmann W, Koenig W, Illig T et al (2009) Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany). Diabetes Care 32:680–682. https://doi.org/10.2337/dc08-2011

    Article  PubMed  PubMed Central  Google Scholar 

  67. Conti G, Scarpini E, Baron P, Livraghi S, Tiriticco M, Bianchi R et al (2002) Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1beta and p75NTR. J Neurol Sci 195:35–40

    Article  CAS  Google Scholar 

  68. Tang W, Lv Q, Chen XF, Zou JJ, Liu ZM, Shi YQ (2013) CD8(+) T cell-mediated cytotoxicity toward Schwann cells promotes diabetic peripheral neuropathy. Cell Physiol Biochem 32:827–837. https://doi.org/10.1159/000354485

    Article  CAS  PubMed  Google Scholar 

  69. De Logu F, Nassini R, Materazzi S, Carvalho Goncalves M, Nosi D, Rossi Degl’Innocenti D et al (2017) Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun. 8:1887. https://doi.org/10.1038/s41467-017-01739-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455

    Article  CAS  Google Scholar 

  71. Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AM (2009) Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain 13:138–145. https://doi.org/10.1016/j.ejpain.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  72. Ducourneau VR, Dolique T, Hachem-Delaunay S, Miraucourt LS, Amadio A, Blaszczyk L et al (2014) Cancer pain is not necessarily correlated with spinal overexpression of reactive glia markers. Pain 155:275–291. https://doi.org/10.1016/j.pain.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  73. Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW et al (2016) Targeting glia for bone cancer pain. Expert Opin Ther Targets. 20:1365–1374. https://doi.org/10.1080/14728222.2016.1214716

    Article  CAS  PubMed  Google Scholar 

  74. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ et al (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341:1236361. https://doi.org/10.1126/science.1236361

    Article  PubMed  Google Scholar 

  75. Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT et al (2014) Denervation suppresses gastric tumorigenesis. Sci Transl Med 6:250ra115. https://doi.org/10.1126/scitranslmed.3009569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME et al (2015) Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16:400–412. https://doi.org/10.1016/j.stem.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA et al (2016) Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci USA 113:3078–3083. https://doi.org/10.1073/pnas.1512603113

    Article  CAS  PubMed  Google Scholar 

  78. Pawlowski A, Weddell G (1967) The lability of cutaneous neural elements. Br J Dermatol 79:14–19

    Article  CAS  Google Scholar 

  79. Dubeykovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM et al (2016) Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun. 7:10517. https://doi.org/10.1038/ncomms10517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaminishi M, Shimizu N, Shimoyama S, Yamaguchi H, Tsuji E, Aoki F et al (1997) Denervation promotes the development of cancer-related lesions in the gastric remnant. J Clin Gastroenterol 25(Suppl 1):S129–S134

    Article  Google Scholar 

  81. Seifert P, Spitznas M (2002) Axons in human choroidal melanoma suggest the participation of nerves in the control of these tumors. Am J Ophthalmol 133:711–713

    Article  Google Scholar 

  82. Ayala GE, Dai H, Powell M, Li R, Ding Y, Wheeler TM et al (2008) Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin Cancer Res 14:7593–7603. https://doi.org/10.1158/1078-0432.CCR-08-1164

    Article  CAS  PubMed  Google Scholar 

  83. Albo D, Akay CL, Marshall CL, Wilks JA, Verstovsek G, Liu H et al (2011) Neurogenesis in colorectal cancer is a marker of aggressive tumor behavior and poor outcomes. Cancer 117:4834–4845. https://doi.org/10.1002/cncr.26117

    Article  CAS  PubMed  Google Scholar 

  84. Tomita T (2012) Localization of nerve fibers in colonic polyps, adenomas, and adenocarcinomas by immunocytochemical staining for PGP 9.5. Dig Dis Sci 57:364–370. https://doi.org/10.1007/s10620-011-1876-7

    Article  CAS  PubMed  Google Scholar 

  85. Terada T, Matsunaga Y (2001) S-100-positive nerve fibers in hepatocellular carcinoma and intrahepatic cholangiocarcinoma: an immunohistochemical study. Pathol Int 51:89–93

    Article  CAS  Google Scholar 

  86. Zhou M, Patel A, Rubin MA (2001) Prevalence and location of peripheral nerve found on prostate needle biopsy. Am J Clin Pathol 115:39–43. https://doi.org/10.1309/2APJ-YKBD-97EH-67GW

    Article  CAS  PubMed  Google Scholar 

  87. Shurin GV, Kruglov O, Ding F, Lin Y, Hao X, Keskinov AA et al (2019) Melanoma-induced reprogramming of Schwann cell signaling aids tumor growth. Cancer Res 79:2736–2747. https://doi.org/10.1158/0008-5472.CAN-18-3872

    Article  CAS  PubMed  Google Scholar 

  88. Demir IE, Boldis A, Pfitzinger PL, Teller S, Brunner E, Klose N et al (2014) Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju184

    Article  PubMed  PubMed Central  Google Scholar 

  89. Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF et al (2016) Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 126:1538–1554. https://doi.org/10.1172/JCI82658

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sroka IC, Chopra H, Das L, Gard JM, Nagle RB, Cress AE (2016) Schwann cells increase prostate and pancreatic tumor cell invasion using laminin binding A6 integrin. J Cell Biochem 117:491–499. https://doi.org/10.1002/jcb.25300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fujii-Nishimura Y, Yamazaki K, Masugi Y, Douguchi J, Kurebayashi Y, Kubota N et al (2018) Mesenchymal-epithelial transition of pancreatic cancer cells at perineural invasion sites is induced by Schwann cells. Pathol Int 68:214–223. https://doi.org/10.1111/pin.12641

    Article  CAS  PubMed  Google Scholar 

  92. Shan C, Wei J, Hou R, Wu B, Yang Z, Wang L et al (2016) Schwann cells promote EMT and the Schwann-like differentiation of salivary adenoid cystic carcinoma cells via the BDNF/TrkB axis. Oncol Rep 35:427–435. https://doi.org/10.3892/or.2015.4366

    Article  CAS  PubMed  Google Scholar 

  93. Zhou Y, Shurin GV, Zhong H, Bunimovich YL, Han B, Shurin MR (2018) Schwann cells augment cell spreading and metastasis of lung cancer. Cancer Res 78:5927–5939. https://doi.org/10.1158/0008-5472.CAN-18-1702

    Article  CAS  PubMed  Google Scholar 

  94. Carroll SL (2012) Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 123:321–348. https://doi.org/10.1007/s00401-011-0928-6

    Article  CAS  Google Scholar 

  95. Elmaci I, Altinoz MA, Sari R (2018) Immune pathobiology of Schwannomas: a concise review. J Neurol Surg A Cent Eur Neurosurg. 79:159–162. https://doi.org/10.1055/s-0037-1603949

    Article  PubMed  Google Scholar 

  96. Shurell E, Singh AS, Crompton JG, Jensen S, Li Y, Dry S et al (2016) Characterizing the immune microenvironment of malignant peripheral nerve sheath tumor by PD-L1 expression and presence of CD8+ tumor infiltrating lymphocytes. Oncotarget. 7:64300–64308. https://doi.org/10.18632/oncotarget.11734

    Article  PubMed  PubMed Central  Google Scholar 

  97. Karmakar S, Reilly KM (2017) The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol. 6:45–60. https://doi.org/10.2217/cns-2016-0024

    Article  CAS  PubMed  Google Scholar 

  98. Patchett AL, Coorens THH, Darby J, Wilson R, McKay MJ, Kamath KS et al (2019) Two of a kind: transmissible Schwann cell cancers in the endangered Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03259-2

    Article  PubMed  Google Scholar 

  99. Liao CP, Booker RC, Brosseau JP, Chen Z, Mo J, Tchegnon E et al (2018) Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J Clin Invest. 128:2848–2861. https://doi.org/10.1172/JCI99424

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098. https://doi.org/10.1155/2012/948098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by the Research Scholar Grant, RSG-19-088-01-CSM (to Y. L. Bunimovich), from the American Cancer Society, and the Hillman Fellows for Innovative Cancer Research Program funded by the Henry L. Hillman Foundation (to Y. L. Bunimovich).

Author information

Authors and Affiliations

Authors

Contributions

Designed the study: MRS, YLB. Conducted experiments: GVS, OK, YLB. Wrote the manuscript: SHZ, HK, RK, MRS, YLB.

Corresponding author

Correspondence to Yuri L. Bunimovich.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is a Focussed Research Review based on a presentation given at the Sixth International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM 2019), held in Tbilisi, Georgia, 29th April–2nd May 2019. It is part of a series of CITIM 2019 papers in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S.H., Shurin, G.V., Khosravi, H. et al. Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother 69, 245–253 (2020). https://doi.org/10.1007/s00262-019-02424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02424-7

Keywords

Navigation