Skip to main content

Advertisement

Log in

Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neurofibromas, schwannomas and malignant peripheral nerve sheath tumors (MPNSTs) all arise from the Schwann cell lineage. Despite their common origin, these tumor types have distinct pathologies and clinical behaviors; a growing body of evidence indicates that they also arise via distinct pathogenic mechanisms. Identification of the genes that are mutated in genetic diseases characterized by the development of either neurofibromas and MPNSTs [neurofibromatosis type 1 (NF1)] or schwannomas [neurofibromatosis type 2 (NF2), schwannomatosis and Carney complex type 1] has greatly advanced our understanding of these mechanisms. The development of genetically engineered mice with ablation of NF1, NF2, SMARCB1/INI1 or PRKAR1A has confirmed the key role these genes play in peripheral nerve sheath tumorigenesis. Establishing the functions of the NF1, NF2, SMARCB1/INI1 and PRKAR1A gene products has led to the identification of key cytoplasmic signaling pathways promoting Schwann cell neoplasia and identified new therapeutic targets. Analyses of human neoplasms and genetically engineered mouse models have established that interactions with other tumor suppressors such as TP53 and CDKN2A promote neurofibroma-MPNST progression and indicate that intratumoral interactions between neoplastic and non-neoplastic cell types play an essential role in peripheral nerve sheath tumorigenesis. Recent advances have also provided new insights into the identity of the neural crest-derived populations that give rise to different types of peripheral nerve sheath tumors. Based on these findings, we now have an initial outline of the molecular mechanisms driving the pathogenesis of neurofibromas, MPNSTs and schwannomas. However, this improved understanding in turn raises a host of intriguing new questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad ZK, Brown CM, Cueva RA, Ryan AF, Doherty JK (2011) ErbB expression, activation, and inhibition with lapatinib and tyrphostin (AG825) in human vestibular schwannomas. Otol Neurotol 32:841–847

    Article  PubMed  Google Scholar 

  2. Ahmadian MR, Hoffmann U, Goody RS, Wittinghofer A (1997) Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry 36:4535–4541

    Article  PubMed  CAS  Google Scholar 

  3. Ahmadian MR, Kiel C, Stege P, Scheffzek K (2003) Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J Mol Biol 329:699–710

    Article  PubMed  CAS  Google Scholar 

  4. Ahronowitz I, Xin W, Kiely R, Sims K, MacCollin M, Nunes FP (2007) Mutational spectrum of the NF2 gene: a meta-analysis of 12 years of research and diagnostic laboratory findings. Hum Mutat 28:1–12

    Article  PubMed  CAS  Google Scholar 

  5. Alfthan K, Heiska L, Gronholm M, Renkema GH, Carpen O (2004) Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem 279:18559–18566

    Article  PubMed  CAS  Google Scholar 

  6. Ammoun S, Cunliffe CH, Allen JC et al (2010) ErbB/HER receptor activation and preclinical efficacy of lapatinib in vestibular schwannoma. Neuro Oncol 12:834–843

    Article  PubMed  CAS  Google Scholar 

  7. Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO (2008) Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 68:5236–5245

    Article  PubMed  CAS  Google Scholar 

  8. Bacci C, Sestini R, Provenzano A et al (2010) Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation. Neurogenetics 11:73–80

    Article  PubMed  CAS  Google Scholar 

  9. Bai Y, Liu YJ, Wang H, Xu Y, Stamenkovic I, Yu Q (2007) Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene 26:836–850

    Article  PubMed  CAS  Google Scholar 

  10. Barret C, Roy C, Montcourrier P, Mangeat P, Niggli V (2000) Mutagenesis of the phosphatidylinositol 4, 5-bisphosphate (PIP(2)) binding site in the NH(2)-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 151:1067–1080

    Article  PubMed  CAS  Google Scholar 

  11. Baser ME (2006) The distribution of constitutional and somatic mutations in the neurofibromatosis 2 gene. Hum Mutat 27:297–306

    Article  PubMed  CAS  Google Scholar 

  12. Baser ME, Kuramoto L, Woods R et al (2005) The location of constitutional neurofibromatosis 2 (NF2) splice site mutations is associated with the severity of NF2. J Med Genet 42:540–546

    Article  PubMed  CAS  Google Scholar 

  13. Bashour AM, Meng JJ, Ip W, MacCollin M, Ratner N (2002) The neurofibromatosis type 2 gene product, merlin, reverses the F-actin cytoskeletal defects in primary human Schwannoma cells. Mol Cell Biol 22:1150–1157

    Article  PubMed  CAS  Google Scholar 

  14. Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356:713–715

    Article  PubMed  CAS  Google Scholar 

  15. Bhola P, Banerjee S, Mukherjee J et al (2010) Preclinical in vivo evaluation of rapamycin in human malignant peripheral nerve sheath explant xenograft. Int J Cancer 126:563–571

    Article  PubMed  CAS  Google Scholar 

  16. Birindelli S, Perrone F, Oggionni M et al (2001) Rb and TP53 pathway alterations in sporadic and NF1-related malignant peripheral nerve sheath tumors. Lab Invest 81:833–844

    PubMed  CAS  Google Scholar 

  17. Bollag G, McCormick F, Clark R (1993) Characterization of full-length neurofibromin: tubulin inhibits Ras GAP activity. EMBO J 12:1923–1927

    PubMed  CAS  Google Scholar 

  18. Bossis I, Stratakis CA (2004) Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 145:5452–5458

    Article  PubMed  CAS  Google Scholar 

  19. Brannan CI, Perkins AS, Vogel KS et al (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029

    Article  PubMed  CAS  Google Scholar 

  20. Brault E, Gautreau A, Lamarine M, Callebaut I, Thomas G, Goutebroze L (2001) Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J Cell Sci 114:1901–1912

    PubMed  CAS  Google Scholar 

  21. Buzard GS, Enomoto T, Anderson LM, Perantoni AO, Devor DE, Rice JM (1999) Activation of neu by missense point mutation in the transmembrane domain in schwannomas induced in C3H/HeNCr mice by transplacental exposure to N-nitrosoethylurea. J Cancer Res Clin Oncol 125:653–659

    Article  PubMed  CAS  Google Scholar 

  22. Byer SJ, Eckert JM, Brossier NM et al (2011) Tamoxifen inhibits malignant peripheral nerve sheath tumor growth in an estrogen receptor-independent manner. Neuro Oncol 13:28–41

    Article  PubMed  CAS  Google Scholar 

  23. Carroll SL, Miller ML, Frohnert PW, Kim SS, Corbett JA (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17:1642–1659

    PubMed  CAS  Google Scholar 

  24. Carroll SL, Ratner N (2008) How does the Schwann cell lineage form tumors in NF1? Glia 56:1590–1605

    Article  PubMed  Google Scholar 

  25. Carroll SL, Stonecypher MS (2004) Tumor suppressor mutations and growth factor signaling in the pathogenesis of NF1-associated peripheral nerve sheath tumors. I. The role of tumor suppressor mutations. J Neuropathol Exp Neurol 63:1115–1123

    PubMed  CAS  Google Scholar 

  26. Carroll SL, Stonecypher MS (2005) Tumor suppressor mutations and growth factor signaling in the pathogenesis of NF1-associated peripheral nerve sheath tumors: II. The role of dysregulated growth factor signaling. J Neuropathol Exp Neurol 64:1–9

    PubMed  CAS  Google Scholar 

  27. CBTRUS (2010) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2006. Central Brain Tumor Registry of the United States, Hinsdale, IL. http://www.cbtrus.org

  28. Christiaans I, Kenter SB, Brink HC et al (2011) Germline SMARCB1 mutation and somatic NF2 mutations in familial multiple meningiomas. J Med Genet 48:93–97

    Article  PubMed  CAS  Google Scholar 

  29. Cichowski K, Shih TS, Schmitt E et al (1999) Mouse models of tumor development in neurofibromatosis type 1. Science 286:2172–2176

    Article  PubMed  CAS  Google Scholar 

  30. Clark JJ, Provenzano M, Diggelmann HR, Xu N, Hansen SS, Hansen MR (2008) The ErbB inhibitors trastuzumab and erlotinib inhibit growth of vestibular schwannoma xenografts in nude mice: a preliminary study. Otol Neurotol 29:846–853

    Article  PubMed  Google Scholar 

  31. Cohen PR, Rapini RP, Farhood AI (1993) Expression of the human hematopoietic progenitor cell antigen CD34 in vascular and spindle cell tumors. J Cutan Pathol 20:15–20

    Article  PubMed  CAS  Google Scholar 

  32. Courtois-Cox S, Genther Williams SM, Reczek EE et al (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472

    Article  PubMed  CAS  Google Scholar 

  33. Crawford AT, Desai D, Gokina P, Basak S, Kim HA (2008) E-cadherin expression in postnatal Schwann cells is regulated by the cAMP-dependent protein kinase a pathway. Glia 56:1637–1647

    Article  PubMed  Google Scholar 

  34. D’Angelo I, Welti S, Bonneau F, Scheffzek K (2006) A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep 7:174–179

    Article  PubMed  CAS  Google Scholar 

  35. Dang I, De Vries GH (2011) Aberrant cAMP metabolism in NF1 malignant peripheral nerve sheath tumor cells. Neurochem Res 36:1697–1705

    Article  PubMed  CAS  Google Scholar 

  36. Dang I, DeVries GH (2005) Schwann cell lines derived from malignant peripheral nerve sheath tumors respond abnormally to platelet-derived growth factor-BB. J Neurosci Res 79:318–328

    Article  PubMed  CAS  Google Scholar 

  37. Dasgupta B, Dugan LL, Gutmann DH (2003) The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activating polypeptide-mediated signaling in astrocytes. J Neurosci 23:8949–8954

    PubMed  CAS  Google Scholar 

  38. DeClue JE, Heffelfinger S, Benvenuto G et al (2000) Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J Clin Invest 105:1233–1241

    Article  PubMed  CAS  Google Scholar 

  39. DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363

    Article  PubMed  CAS  Google Scholar 

  40. Dovas A, Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390:1–9

    Article  PubMed  CAS  Google Scholar 

  41. Easton DF, Ponder MA, Huson SM, Ponder BA (1993) An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet 53:305–313

    PubMed  CAS  Google Scholar 

  42. Eckert JM, Byer SJ, Clodfelder-Miller BJ, Carroll SL (2009) Neuregulin-1 beta and neuregulin-1 alpha differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. Glia 57:1501–1520

    Article  PubMed  Google Scholar 

  43. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A (2002) Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39:311–314

    Article  PubMed  CAS  Google Scholar 

  44. Evans DG, Huson SM, Donnai D et al (1992) A clinical study of type 2 neurofibromatosis. Q J Med 84:603–618

    PubMed  CAS  Google Scholar 

  45. Evans DG, Ramsden RT, Shenton A et al (2007) Mosaicism in neurofibromatosis type 2: an update of risk based on uni/bilaterality of vestibular schwannoma at presentation and sensitive mutation analysis including multiple ligation-dependent probe amplification. J Med Genet 44:424–428

    Article  PubMed  CAS  Google Scholar 

  46. Evans DG, Trueman L, Wallace A, Collins S, Strachan T (1998) Genotype/phenotype correlations in type 2 neurofibromatosis (NF2): evidence for more severe disease associated with truncating mutations. J Med Genet 35:450–455

    Article  PubMed  CAS  Google Scholar 

  47. Evans GR, Lloyd SK, Ramsden RT (2011) Neurofibromatosis type 2. Adv Otorhinolaryngol 70:91–98

    PubMed  Google Scholar 

  48. Fernandes KJ, McKenzie IA, Mill P et al (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6:1082–1093

    Article  PubMed  CAS  Google Scholar 

  49. Fernandez-Valle C, Tang Y, Ricard J et al (2002) Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31:354–362

    PubMed  CAS  Google Scholar 

  50. Ferner RE (2007) Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 6:340–351

    Article  PubMed  Google Scholar 

  51. Firat-Karalar EN, Welch MD (2011) New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 23:4–13

    Article  PubMed  CAS  Google Scholar 

  52. Flaiz C, Ammoun S, Biebl A, Hanemann CO (2009) Altered adhesive structures and their relation to RhoGTPase activation in merlin-deficient Schwannoma. Brain Pathol 19:27–38

    Article  PubMed  Google Scholar 

  53. Flaiz C, Utermark T, Parkinson DB, Poetsch A, Hanemann CO (2008) Impaired intercellular adhesion and immature adherens junctions in merlin-deficient human primary schwannoma cells. Glia 56:506–515

    Article  PubMed  CAS  Google Scholar 

  54. Fraenzer JT, Pan H, Minimo L Jr, Smith GM, Knauer D, Hung G (2003) Overexpression of the NF2 gene inhibits schwannoma cell proliferation through promoting PDGFR degradation. Int J Oncol 23:1493–1500

    PubMed  CAS  Google Scholar 

  55. Frohnert PW, Stonecypher MS, Carroll SL (2003) Constitutive activation of the neuregulin-1/ErbB receptor signaling pathway is essential for the proliferation of a neoplastic Schwann cell line. Glia 43:104–118

    Article  PubMed  Google Scholar 

  56. Giovannini M, Robanus-Maandag E, van der Valk M et al (2000) Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 14:1617–1630

    PubMed  CAS  Google Scholar 

  57. Gonzalez-Agosti C, Xu L, Pinney D et al (1996) The merlin tumor suppressor localizes preferentially in membrane ruffles. Oncogene 13:1239–1247

    PubMed  CAS  Google Scholar 

  58. Greene EL, Horvath AD, Nesterova M, Giatzakis C, Bossis I, Stratakis CA (2008) In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum Mutat 29:633–639

    Article  PubMed  CAS  Google Scholar 

  59. Gronholm M, Sainio M, Zhao F, Heiska L, Vaheri A, Carpen O (1999) Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J Cell Sci 112:895–904

    PubMed  CAS  Google Scholar 

  60. Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang Lu K, Hendrix M (1999) Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesionand spreading. Hum Mol Genet 8:267–275

    Article  PubMed  CAS  Google Scholar 

  61. Gutmann DH, Stiles CD, Lowe SW, Bollag GE, Furnari FB, Charest AL (2011) Report from the fifth National Cancer Institute Mouse Models of Human Cancers Consortium Nervous System Tumors Workshop. Neuro Oncol 13:692–699

    Article  PubMed  Google Scholar 

  62. Hadfield KD, Newman WG, Bowers NL et al (2008) Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet 45:332–339

    Article  PubMed  CAS  Google Scholar 

  63. Hamaratoglu F, Willecke M, Kango-Singh M et al (2006) The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8:27–36

    Article  PubMed  CAS  Google Scholar 

  64. Hansen MR, Roehm PC, Chatterjee P, Green SH (2006) Constitutive neuregulin-1/ErbB signaling contributes to human vestibular schwannoma proliferation. Glia 53:593–600

    Article  PubMed  Google Scholar 

  65. Hara T, Bianchi AB, Seizinger BR, Kley N (1994) Molecular cloning and characterization of alternatively spliced transcripts of the mouse neurofibromatosis 2 gene. Cancer Res 54:330–335

    PubMed  CAS  Google Scholar 

  66. Hawes JJ, Tuskan RG, Reilly KM (2007) Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies. Neurogenetics 8:121–130

    Article  PubMed  CAS  Google Scholar 

  67. Hergovich A, Hemmings BA (2009) Mammalian NDR/LATS protein kinases in hippo tumor suppressor signaling. Biofactors 35:338–345

    Article  PubMed  CAS  Google Scholar 

  68. Hirota S, Nomura S, Asada H, Ito A, Morii E, Kitamura Y (1993) Possible involvement of c-kit receptor and its ligand in increase of mast cells in neurofibroma tissues. Arch Pathol Lab Med 117:996–999

    PubMed  CAS  Google Scholar 

  69. Holtkamp N, Atallah I, Okuducu AF et al (2007) MMP-13 and p53 in the progression of malignant peripheral nerve sheath tumors. Neoplasia 9:671–677

    Article  PubMed  CAS  Google Scholar 

  70. Huang Y, Rangwala F, Fulkerson PC et al (2004) Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Oncogene 23:368–378

    Article  PubMed  CAS  Google Scholar 

  71. Hughes SC, Fehon RG (2006) Phosphorylation and activity of the tumor suppressor Merlin and the ERM protein Moesin are coordinately regulated by the Slik kinase. J Cell Biol 175:305–313

    Article  PubMed  CAS  Google Scholar 

  72. Huijbregts RP, Roth KA, Schmidt RE, Carroll SL (2003) Hypertrophic neuropathies and malignant peripheral nerve sheath tumors in transgenic mice overexpressing glial growth factor beta3 in myelinating Schwann cells. J Neurosci 23:7269–7280

    PubMed  CAS  Google Scholar 

  73. Hulsebos TJ, Plomp AS, Wolterman RA, Robanus-Maandag EC, Baas F, Wesseling P (2007) Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am J Hum Genet 80:805–810

    Article  PubMed  CAS  Google Scholar 

  74. Huynh DP, Nechiporuk T, Pulst SM (1994) Alternative transcripts in the mouse neurofibromatosis type 2 (NF2) gene are conserved and code for schwannomins with distinct C-terminal domains. Hum Mol Genet 3:1075–1079

    Article  PubMed  CAS  Google Scholar 

  75. Ingram DA, Hiatt K, King AJ et al (2001) Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J Exp Med 194:57–69

    Article  PubMed  CAS  Google Scholar 

  76. Ingram DA, Yang FC, Travers JB et al (2000) Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191:181–188

    Article  PubMed  CAS  Google Scholar 

  77. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7:353–361

    Article  PubMed  CAS  Google Scholar 

  78. Jadayel D, Fain P, Upadhyaya M et al (1990) Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature 343:558–559

    Article  PubMed  CAS  Google Scholar 

  79. James MF, Manchanda N, Gonzalez-Agosti C, Hartwig JH, Ramesh V (2001) The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem J 356:377–386

    Article  PubMed  CAS  Google Scholar 

  80. Johannessen CM, Johnson BW, Williams SM et al (2008) TORC1 is essential for NF1-associated malignancies. Curr Biol 18:56–62

    Article  PubMed  CAS  Google Scholar 

  81. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102:8573–8578

    Article  PubMed  CAS  Google Scholar 

  82. Johansson G, Mahller YY, Collins MH et al (2008) Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther 7:1237–1245

    Article  PubMed  CAS  Google Scholar 

  83. Jones GN, Tep C, Towns WH 2nd et al (2008) Tissue-specific ablation of Prkar1a causes schwannomas by suppressing neurofibromatosis protein production. Neoplasia 10:1213–1221

    PubMed  CAS  Google Scholar 

  84. Joseph NM, Mosher JT, Buchstaller J et al (2008) The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13:129–140

    Article  PubMed  CAS  Google Scholar 

  85. Kim HA, Ratner N, Roberts TM, Stiles CD (2001) Schwann cell proliferative responses to cAMP and Nf1 are mediated by cyclin D1. J Neurosci 21:1110–1116

    PubMed  CAS  Google Scholar 

  86. King D, Yang G, Thompson MA, Hiebert SW (2002) Loss of neurofibromatosis-1 and p19(ARF) cooperate to induce a multiple tumor phenotype. Oncogene 21:4978–4982

    Article  PubMed  CAS  Google Scholar 

  87. Kirschner LS, Carney JA, Pack SD et al (2000) Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 26:89–92

    Article  PubMed  CAS  Google Scholar 

  88. Kirschner LS, Kusewitt DF, Matyakhina L et al (2005) A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res 65:4506–4514

    Article  PubMed  CAS  Google Scholar 

  89. Kirschner LS, Sandrini F, Monbo J, Lin JP, Carney JA, Stratakis CA (2000) Genetic heterogeneity and spectrum of mutations of the PRKAR1A gene in patients with the carney complex. Hum Mol Genet 9:3037–3046

    Article  PubMed  CAS  Google Scholar 

  90. Kissil JL, Johnson KC, Eckman MS, Jacks T (2002) Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 277:10394–10399

    Article  PubMed  CAS  Google Scholar 

  91. Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T (2003) Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 12:841–849

    Article  PubMed  CAS  Google Scholar 

  92. Kluwe L, Friedrich R, Mautner VF (1999) Loss of NF1 allele in Schwann cells but not in fibroblasts derived from an NF1-associated neurofibroma. Genes Chromosomes Cancer 24:283–285

    Article  PubMed  CAS  Google Scholar 

  93. Kluwe L, MacCollin M, Tatagiba M et al (1998) Phenotypic variability associated with 14 splice-site mutations in the NF2 gene. Am J Med Genet 77:228–233

    Article  PubMed  CAS  Google Scholar 

  94. Koga T, Iwasaki H, Ishiguro M, Matsuzaki A, Kikuchi M (2002) Losses in chromosomes 17, 19, and 22q in neurofibromatosis type 1 and sporadic neurofibromas: a comparative genomic hybridization analysis. Cancer Genet Cytogenet 136:113–120

    Article  PubMed  CAS  Google Scholar 

  95. Korkiamaki T, Yla-Outinen H, Koivunen J, Karvonen SL, Peltonen J (2002) Altered calcium-mediated cell signaling in keratinocytes cultured from patients with neurofibromatosis type 1. Am J Pathol 160:1981–1990

    Article  PubMed  CAS  Google Scholar 

  96. Kourea HP, Orlow I, Scheithauer BW, Cordon-Cardo C, Woodruff JM (1999) Deletions of the INK4A gene occur in malignant peripheral nerve sheath tumors but not in neurofibromas. Am J Pathol 155:1855–1860

    Article  PubMed  CAS  Google Scholar 

  97. Kweh F, Zheng M, Kurenova E, Wallace M, Golubovskaya V, Cance WG (2009) Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase. Mol Carcinog 48:1005–1017

    Article  PubMed  CAS  Google Scholar 

  98. Lakkis MM, Golden JA, O’Shea KS, Epstein JA (1999) Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Dev Biol 212:80–92

    Article  PubMed  CAS  Google Scholar 

  99. Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI (2003) NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17:1090–1100

    Article  PubMed  CAS  Google Scholar 

  100. Lallemand D, Manent J, Couvelard A et al (2009) Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene 28:854–865

    Article  PubMed  CAS  Google Scholar 

  101. Laulajainen M, Muranen T, Carpen O, Gronholm M (2008) Protein kinase A-mediated phosphorylation of the NF2 tumor suppressor protein merlin at serine 10 affects the actin cytoskeleton. Oncogene 27:3233–3243

    Article  PubMed  CAS  Google Scholar 

  102. Laulajainen M, Muranen T, Nyman TA, Carpen O, Gronholm M (2011) Multistep phosphorylation by oncogenic kinases enhances the degradation of the NF2 tumor suppressor Merlin. Neoplasia 13:643–652

    PubMed  CAS  Google Scholar 

  103. Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF (2011) Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 71:4686–4695

    Article  PubMed  CAS  Google Scholar 

  104. Le LQ, Shipman T, Burns DK, Parada LF (2009) Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell 4:453–463

    Article  PubMed  CAS  Google Scholar 

  105. Legius E, Dierick H, Wu R et al (1994) TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer 10:250–255

    Article  PubMed  CAS  Google Scholar 

  106. Legius E, Marchuk DA, Collins FS, Glover TW (1993) Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet 3:122–126

    Article  PubMed  CAS  Google Scholar 

  107. Lewallen KA, Shen YA, De la Torre AR, Ng BK, Meijer D, Chan JR (2011) Assessing the role of the cadherin/catenin complex at the Schwann cell-axon interface and in the initiation of myelination. J Neurosci 31:3032–3043

    Article  PubMed  CAS  Google Scholar 

  108. Li W, You L, Cooper J et al (2010) Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 140:477–490

    Article  PubMed  CAS  Google Scholar 

  109. Ling BC, Wu J, Miller SJ et al (2005) Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell 7:65–75

    Article  PubMed  CAS  Google Scholar 

  110. Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG (2009) Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 29:4235–4249

    Article  PubMed  CAS  Google Scholar 

  111. Luongo C, Moser AR, Gledhill S, Dove WF (1994) Loss of Apc + in intestinal adenomas from Min mice. Cancer Res 54:5947–5952

    PubMed  CAS  Google Scholar 

  112. Lutchman M, Rouleau GA (1995) The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res 55:2270–2274

    PubMed  CAS  Google Scholar 

  113. MacCollin M, Chiocca EA, Evans DG et al (2005) Diagnostic criteria for schwannomatosis. Neurology 64:1838–1845

    Article  PubMed  CAS  Google Scholar 

  114. MacCollin M, Willett C, Heinrich B et al (2003) Familial schwannomatosis: exclusion of the NF2 locus as the germline event. Neurology 60:1968–1974

    PubMed  CAS  Google Scholar 

  115. MacCollin M, Woodfin W, Kronn D, Short MP (1996) Schwannomatosis: a clinical and pathologic study. Neurology 46:1072–1079

    PubMed  CAS  Google Scholar 

  116. Maeda M, Matsui T, Imamura M, Tsukita S (1999) Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins. Oncogene 18:4788–4797

    Article  PubMed  CAS  Google Scholar 

  117. Manchanda N, Lyubimova A, Ho HY et al (2005) The NF2 tumor suppressor Merlin and the ERM proteins interact with N-WASP and regulate its actin polymerization function. J Biol Chem 280:12517–12522

    Article  PubMed  CAS  Google Scholar 

  118. Mangoura D, Sun Y, Li C et al (2006) Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Oncogene 25:735–745

    Article  PubMed  CAS  Google Scholar 

  119. Mantripragada KK, Spurlock G, Kluwe L et al (2008) High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res 14:1015–1024

    Article  PubMed  CAS  Google Scholar 

  120. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ (1997) Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272:4378–4383

    Article  PubMed  CAS  Google Scholar 

  121. Mautner VF, Kluwe L, Friedrich RE et al (2010) Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 Mb type-1 NF1 deletions. J Med Genet 47:623–630

    Article  PubMed  CAS  Google Scholar 

  122. Mawrin C, Kirches E, Boltze C, Dietzmann K, Roessner A, Schneider-Stock R (2002) Immunohistochemical and molecular analysis of p53, RB, and PTEN in malignant peripheral nerve sheath tumors. Virchows Arch 440:610–615

    Article  PubMed  CAS  Google Scholar 

  123. Mayes DA, Rizvi TA, Cancelas JA et al (2011) Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res 71:4675–4685

    Article  PubMed  CAS  Google Scholar 

  124. McCartney BM, Kulikauskas RM, LaJeunesse DR, Fehon RG (2000) The neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127:1315–1324

    PubMed  CAS  Google Scholar 

  125. McCaughan JA, Holloway SM, Davidson R, Lam WW (2007) Further evidence of the increased risk for malignant peripheral nerve sheath tumour from a Scottish cohort of patients with neurofibromatosis type 1. J Med Genet 44:463–466

    Article  PubMed  CAS  Google Scholar 

  126. McClatchey AI, Saotome I, Mercer K et al (1998) Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12:1121–1133

    Article  PubMed  CAS  Google Scholar 

  127. McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T (1997) The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev 11:1253–1265

    Article  PubMed  CAS  Google Scholar 

  128. Meng JJ, Lowrie DJ, Sun H et al (2000) Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggests modulation of ERM proteins by merlin. J Neurosci Res 62:491–502

    Article  PubMed  CAS  Google Scholar 

  129. Menichella DM, Arroyo EJ, Awatramani R et al (2001) Protein zero is necessary for E-cadherin-mediated adherens junction formation in Schwann cells. Mol Cell Neurosci 18:606–618

    Article  PubMed  CAS  Google Scholar 

  130. Menon AG, Anderson KM, Riccardi VM et al (1990) Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci USA 87:5435–5439

    Article  PubMed  CAS  Google Scholar 

  131. Messiaen L, Yao S, Brems H et al (2009) Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA 302:2111–2118

    Article  PubMed  CAS  Google Scholar 

  132. Messiaen LM, Callens T, Mortier G et al (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15:541–555

    Article  PubMed  CAS  Google Scholar 

  133. Miller SJ, Jessen WJ, Mehta T et al (2009) Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med 1:236–248

    Article  PubMed  CAS  Google Scholar 

  134. Miller SJ, Rangwala F, Williams J et al (2006) Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res 66:2584–2591

    Article  PubMed  CAS  Google Scholar 

  135. Morrison H, Sherman LS, Legg J et al (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15:968–980

    Article  PubMed  CAS  Google Scholar 

  136. Murthy A, Gonzalez-Agosti C, Cordero E et al (1998) NHE-RF, a regulatory cofactor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem 273:1273–1276

    Article  PubMed  CAS  Google Scholar 

  137. Nguyen R, Reczek D, Bretscher A (2001) Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J Biol Chem 276:7621–7629

    Article  PubMed  CAS  Google Scholar 

  138. Nielsen GP, Stemmer-Rachamimov AO, Ino Y, Moller MB, Rosenberg AE, Louis DN (1999) Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol 155:1879–1884

    Article  PubMed  CAS  Google Scholar 

  139. Ohba Y, Mochizuki N, Yamashita S et al (2000) Regulatory proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3. J Biol Chem 275:20020–20026

    Article  PubMed  CAS  Google Scholar 

  140. Okada T, Lopez-Lago M, Giancotti FG (2005) Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171:361–371

    Article  PubMed  CAS  Google Scholar 

  141. Pasmant E, Sabbagh A, Spurlock G et al (2010) NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat 31:E1506–E1518

    Article  PubMed  CAS  Google Scholar 

  142. Pelton PD, Sherman LS, Rizvi TA et al (1998) Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene 17:2195–2209

    Article  PubMed  CAS  Google Scholar 

  143. Perry A, Kunz SN, Fuller CE et al (2002) Differential NF1, p16, and EGFR patterns by interphase cytogenetics (FISH) in malignant peripheral nerve sheath tumor (MPNST) and morphologically similar spindle cell neoplasms. J Neuropathol Exp Neurol 61:702–709

    PubMed  CAS  Google Scholar 

  144. Perry A, Roth KA, Banerjee R, Fuller CE, Gutmann DH (2001) NF1 deletions in S-100 protein-positive and negative cells of sporadic and neurofibromatosis 1 (NF1)-associated plexiform neurofibromas and malignant peripheral nerve sheath tumors. Am J Pathol 159:57–61

    Article  PubMed  CAS  Google Scholar 

  145. Pykett MJ, Murphy M, Harnish PR, George DL (1994) The neurofibromatosis 2 (NF2) tumor suppressor gene encodes multiple alternatively spliced transcripts. Hum Mol Genet 3:559–564

    Article  PubMed  CAS  Google Scholar 

  146. Rangwala R, Banine F, Borg JP, Sherman LS (2005) Erbin regulates mitogen-activated protein (MAP) kinase activation and MAP kinase-dependent interactions between Merlin and adherens junction protein complexes in Schwann cells. J Biol Chem 280:11790–11797

    Article  PubMed  CAS  Google Scholar 

  147. Reilly KM, Broman KW, Bronson RT et al (2006) An imprinted locus epistatically influences Nstr1 and Nstr2 to control resistance to nerve sheath tumors in a neurofibromatosis type 1 mouse model. Cancer Res 66:62–68

    Article  PubMed  CAS  Google Scholar 

  148. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH (2000) Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 97:13796–13800

    Article  PubMed  CAS  Google Scholar 

  149. Robinson-White A, Hundley TR, Shiferaw M, Bertherat J, Sandrini F, Stratakis CA (2003) Protein kinase-A activity in PRKAR1A-mutant cells, and regulation of mitogen-activated protein kinases ERK1/2. Hum Mol Genet 12:1475–1484

    Article  PubMed  CAS  Google Scholar 

  150. Robinson-White A, Meoli E, Stergiopoulos S et al (2006) PRKAR1A mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab 91:2380–2388

    Article  PubMed  CAS  Google Scholar 

  151. Rong R, Surace EI, Haipek CA, Gutmann DH, Ye K (2004) Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 23:8447–8454

    Article  PubMed  CAS  Google Scholar 

  152. Rouleau GA, Merel P, Lutchman M et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521

    Article  PubMed  CAS  Google Scholar 

  153. Ruttledge MH, Andermann AA, Phelan CM et al (1996) Type of mutation in the neurofibromatosis type 2 gene (NF2) frequently determines severity of disease. Am J Hum Genet 59:331–342

    PubMed  CAS  Google Scholar 

  154. Ryan JJ, Klein KA, Neuberger TJ et al (1994) Role for the stem cell factor/KIT complex in Schwann cell neoplasia and mast cell proliferation associated with neurofibromatosis. J Neurosci Res 37:415–432

    Article  PubMed  CAS  Google Scholar 

  155. Sainio M, Zhao F, Heiska L et al (1997) Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J Cell Sci 110(Pt 18):2249–2260

    PubMed  CAS  Google Scholar 

  156. Schade B, Lam SH, Cernea D et al (2007) Distinct ErbB-2 coupled signaling pathways promote mammary tumors with unique pathologic and transcriptional profiles. Cancer Res 67:7579–7588

    Article  PubMed  CAS  Google Scholar 

  157. Scheffzek K, Ahmadian MR, Kabsch W et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338

    Article  PubMed  CAS  Google Scholar 

  158. Schulze KM, Hanemann CO, Muller HW, Hanenberg H (2002) Transduction of wild-type merlin into human schwannoma cells decreases schwannoma cell growth and induces apoptosis. Hum Mol Genet 11:69–76

    Article  PubMed  CAS  Google Scholar 

  159. Scoles DR, Huynh DP, Morcos PA et al (1998) Neurofibromatosis 2 tumour suppressor schwannomin interacts with betaII-spectrin. Nat Genet 18:354–359

    Article  PubMed  CAS  Google Scholar 

  160. Seizinger BR, Rouleau G, Ozelius LJ et al (1987) Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science 236:317–319

    Article  PubMed  CAS  Google Scholar 

  161. Sestini R, Bacci C, Provenzano A, Genuardi M, Papi L (2008) Evidence of a four-hit mechanism involving SMARCB1 and NF2 in schwannomatosis-associated schwannomas. Hum Mutat 29:227–231

    Article  PubMed  CAS  Google Scholar 

  162. Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O (1999) Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65:1342–1348

    Article  PubMed  CAS  Google Scholar 

  163. Shaw RJ, McClatchey AI, Jacks T (1998) Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J Biol Chem 273:7757–7764

    Article  PubMed  CAS  Google Scholar 

  164. Shaw RJ, Paez JG, Curto M et al (2001) The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 1:63–72

    Article  PubMed  CAS  Google Scholar 

  165. Sherman L, Xu HM, Geist RT et al (1997) Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15:2505–2509

    Article  PubMed  CAS  Google Scholar 

  166. Sherman LS, Atit R, Rosenbaum T, Cox AD, Ratner N (2000) Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 275:30740–30745

    Article  PubMed  CAS  Google Scholar 

  167. Sobel RA (1993) Vestibular (acoustic) schwannomas: histologic features in neurofibromatosis 2 and in unilateral cases. J Neuropathol Exp Neurol 52:106–113

    Article  PubMed  CAS  Google Scholar 

  168. Stemmer-Rachamimov AO, Louis DN, Nielsen GP et al (2004) Comparative pathology of nerve sheath tumors in mouse models and humans. Cancer Res 64:3718–3724

    Article  PubMed  CAS  Google Scholar 

  169. Stemmer-Rachamimov AO, Xu L, Gonzalez-Agosti C et al (1997) Universal absence of merlin, but not other ERM family members, in schwannomas. Am J Pathol 151:1649–1654

    PubMed  CAS  Google Scholar 

  170. Stergiopoulos SG, Stratakis CA (2003) Human tumors associated with Carney complex and germline PRKAR1A mutations: a protein kinase A disease! FEBS Lett 546:59–64

    Article  PubMed  CAS  Google Scholar 

  171. Stonecypher MS, Byer SJ, Grizzle WE, Carroll SL (2005) Activation of the neuregulin-1/ErbB signaling pathway promotes the proliferation of neoplastic Schwann cells in human malignant peripheral nerve sheath tumors. Oncogene 24:5589–5605

    Article  PubMed  CAS  Google Scholar 

  172. Stonecypher MS, Chaudhury AR, Byer SJ, Carroll SL (2006) Neuregulin growth factors and their ErbB receptors form a potential signaling network for schwannoma tumorigenesis. J Neuropathol Exp Neurol 65:162–175

    Article  PubMed  CAS  Google Scholar 

  173. Storlazzi CT, Brekke HR, Mandahl N et al (2006) Identification of a novel amplicon at distal 17q containing the BIRC5/SURVIVIN gene in malignant peripheral nerve sheath tumours. J Pathol 209:492–500

    Article  PubMed  CAS  Google Scholar 

  174. Swensen JJ, Keyser J, Coffin CM, Biegel JA, Viskochil DH, Williams MS (2009) Familial occurrence of schwannomas and malignant rhabdoid tumour associated with a duplication in SMARCB1. J Med Genet 46:68–72

    Article  PubMed  CAS  Google Scholar 

  175. Takahashi K, Sasaki T, Mammoto A et al (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272:23371–23375

    Article  PubMed  CAS  Google Scholar 

  176. Tao Y, Dai P, Liu Y et al (2009) Erbin regulates NRG1 signaling and myelination. Proc Natl Acad Sci USA 106:9477–9482

    Article  PubMed  CAS  Google Scholar 

  177. Thaxton C, Lopera J, Bott M, Fernandez-Valle C (2008) Neuregulin and laminin stimulate phosphorylation of the NF2 tumor suppressor in Schwann cells by distinct protein kinase A and p21-activated kinase-dependent pathways. Oncogene 27:2705–2715

    Article  PubMed  CAS  Google Scholar 

  178. Tikoo A, Varga M, Ramesh V, Gusella J, Maruta H (1994) An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 269:23387–23390

    PubMed  CAS  Google Scholar 

  179. Tona A, Perides G, Rahemtulla F, Dahl D (1993) Extracellular matrix in regenerating rat sciatic nerve: a comparative study on the localization of laminin, hyaluronic acid, and chondroitin sulfate proteoglycans, including versican. J Histochem Cytochem 41:593–599

    Article  PubMed  CAS  Google Scholar 

  180. Trofatter JA, MacCollin MM, Rutter JL et al (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 75:826

    Article  PubMed  CAS  Google Scholar 

  181. Upadhyaya M, Huson SM, Davies M et al (2007) An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970–2972 delAAT): evidence of a clinically significant NF1 genotype–phenotype correlation. Am J Hum Genet 80:140–151

    Article  PubMed  CAS  Google Scholar 

  182. Upadhyaya M, Kluwe L, Spurlock G et al (2008) Germline and somatic NF1 gene mutation spectrum in NF1-associated malignant peripheral nerve sheath tumors (MPNSTs). Hum Mutat 29:74–82

    Article  PubMed  CAS  Google Scholar 

  183. Utermark T, Kaempchen K, Hanemann CO (2003) Pathological adhesion of primary human schwannoma cells is dependent on altered expression of integrins. Brain Pathol 13:352–363

    Article  PubMed  Google Scholar 

  184. Vandenbroucke I, Van Oostveldt P, Coene E, De Paepe A, Messiaen L (2004) Neurofibromin is actively transported to the nucleus. FEBS Lett 560:98–102

    Article  PubMed  CAS  Google Scholar 

  185. Versteege I, Sevenet N, Lange J et al (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206

    Article  PubMed  CAS  Google Scholar 

  186. Viskochil D, Buchberg AM, Xu G et al (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62:187–192

    Article  PubMed  CAS  Google Scholar 

  187. Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF (1999) Mouse tumor model for neurofibromatosis type 1. Science 286:2176–2179

    Article  PubMed  CAS  Google Scholar 

  188. Vries RG, Bezrookove V, Zuijderduijn LM et al (2005) Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev 19:665–670

    Article  PubMed  CAS  Google Scholar 

  189. Wallace MR, Marchuk DA, Andersen LB et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186

    Article  PubMed  CAS  Google Scholar 

  190. Wanner IB, Guerra NK, Mahoney J et al (2006) Role of N-cadherin in Schwann cell precursors of growing nerves. Glia 54:439–459

    Article  PubMed  Google Scholar 

  191. Wanner IB, Wood PM (2002) N-cadherin mediates axon-aligned process growth and cell–cell interaction in rat Schwann cells. J Neurosci 22:4066–4079

    PubMed  CAS  Google Scholar 

  192. Watanabe T, Sakamoto A, Tamiya S, Oda Y, Masuda K, Tsuneyoshi M (2000) H-ras-1 point mutation in malignant peripheral nerve sheath tumors: polymerase chain reaction restriction fragment length polymorphism analysis and direct sequencing from paraffin-embedded tissues. Int J Mol Med 5:605–608

    PubMed  CAS  Google Scholar 

  193. Weiss SW, Nickoloff BJ (1993) CD-34 is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am J Surg Pathol 17:1039–1045

    Article  PubMed  CAS  Google Scholar 

  194. Welti S, Fraterman S, D’Angelo I, Wilm M, Scheffzek K (2007) The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J Mol Biol 366:551–562

    Article  PubMed  CAS  Google Scholar 

  195. Welti S, Kuhn S, D’Angelo I, Brugger B, Kaufmann D, Scheffzek K (2011) Structural and biochemical consequences of NF1 associated nontruncating mutations in the Sec14-PH module of neurofibromin. Hum Mutat 32:191–197

    Article  PubMed  CAS  Google Scholar 

  196. Widemann BC, Salzer WL, Arceci RJ et al (2006) Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol 24:507–516

    Article  PubMed  CAS  Google Scholar 

  197. Wiederhold T, Lee MF, James M et al (2004) Magicin, a novel cytoskeletal protein associates with the NF2 tumor suppressor merlin and Grb2. Oncogene 23:8815–8825

    Article  PubMed  CAS  Google Scholar 

  198. Wimmer K, Roca X, Beiglbock H et al (2007) Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5′ splice-site disruption. Hum Mutat 28:599–612

    Article  PubMed  CAS  Google Scholar 

  199. Wimmer K, Yao S, Claes K et al (2006) Spectrum of single- and multiexon NF1 copy number changes in a cohort of 1, 100 unselected NF1 patients. Genes Chromosomes Cancer 45:265–276

    Article  PubMed  CAS  Google Scholar 

  200. Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56:1481–1490

    Article  PubMed  Google Scholar 

  201. Wu J, Williams JP, Rizvi TA et al (2008) Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13:105–116

    Article  PubMed  CAS  Google Scholar 

  202. Xiao GH, Beeser A, Chernoff J, Testa JR (2002) p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277:883–886

    Article  PubMed  CAS  Google Scholar 

  203. Xiao GH, Gallagher R, Shetler J et al (2005) The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 25:2384–2394

    Article  PubMed  CAS  Google Scholar 

  204. Xu GF, Lin B, Tanaka K et al (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841

    Article  PubMed  CAS  Google Scholar 

  205. Xu GF, O’Connell P, Viskochil D et al (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608

    Article  PubMed  CAS  Google Scholar 

  206. Yang FC, Chen S, Clegg T et al (2006) Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-β signaling. Hum Mol Genet 15:2421–2437

    Article  PubMed  CAS  Google Scholar 

  207. Yang FC, Ingram DA, Chen S et al (2003) Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1 ± mast cells. J Clin Invest 112:1851–1861

    Article  PubMed  CAS  Google Scholar 

  208. Yang FC, Ingram DA, Chen S et al (2008) Nf1-dependent tumors require a microenvironment containing Nf1 +/−- and c-kit-dependent bone marrow. Cell 135:437–448

    Article  PubMed  CAS  Google Scholar 

  209. Young P, Boussadia O, Berger P et al (2002) E-cadherin is required for the correct formation of autotypic adherens junctions of the outer mesaxon but not for the integrity of myelinated fibers of peripheral nerves. Mol Cell Neurosci 21:341–351

    Article  PubMed  CAS  Google Scholar 

  210. Zheng H, Chang L, Patel N et al (2008) Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 13:117–128

    Article  PubMed  CAS  Google Scholar 

  211. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296:920–922

    Article  PubMed  CAS  Google Scholar 

  212. Zou CY, Smith KD, Zhu QS et al (2009) Dual targeting of AKT and mammalian target of rapamycin: a potential therapeutic approach for malignant peripheral nerve sheath tumor. Mol Cancer Ther 8:1157–1168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Neurological Diseases and Stroke (R01 NS048353 to S.L.C.), the National Cancer Institute (R01 CA122804 to S.L.C.; R01 CA134773 to Kevin A. Roth and S.L.C.) and the Department of Defense (X81XWH-09-1-0086 to S.L.C.). We thank the Alabama Neuroscience Blueprint Core Center (P30 NS57098) for technical assistance with studies from our laboratory that are described in this review. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Carroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, S.L. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 123, 321–348 (2012). https://doi.org/10.1007/s00401-011-0928-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0928-6

Keywords

Navigation