Skip to main content

Advertisement

Log in

Therapeutic reduction of cell-mediated immunosuppression in mycosis fungoides and Sézary syndrome

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Letter to the Editors to this article was published on 24 March 2018

Abstract

Tumor progression is associated with progressive immunosuppression mediated in part by T regulatory cell(s) (Treg) and/or myeloid-derived suppressor cell(s) (MDSC). Development of strategies to reduce populations of immune cells with suppressive function in cancer patients may enable the induction or recovery of immunity against tumor cells, which may limit or reverse disease progression. With a goal of developing Treg and MDSC neutralizing strategies to treat mycosis fungoides (MF) and Sézary syndrome (SzS), we determined the association between disease stage and suppressor cell populations in patients with MF/SzS, including those responding to therapy. We found elevations in Treg populations, across Treg subtypes, in patients with SzS, and these Treg markedly suppressed proliferation of autologous CD4+CD25 responder T cells. Interestingly, while MDSC numbers were not increased in MF/SzS patients, MDSC from patients with stage IB and above produced significantly more reactive oxygen species than those from stage IA MF patients and control cohorts. Therapy with the CD25-targeting agent denileukin diftitox or IFN-α2b was associated with a reduction in Treg numbers or MDSC function, respectively. These studies identify potential mechanisms of action for these therapies and support the development of coordinated strategies targeting both Treg and MDSC activities in patients with MF/SzS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARGI:

Arginase-I

DD:

Denileukin diftitox

IFN:

Interferon

MDSC:

Myeloid-derived suppressor cell(s)

MF:

Mycosis fungoides

nTreg:

Naturally occurring T regulatory cells, CD4+CD25+Foxp3+ cells

PEG:

Polyethylene glycol (PEG)ylated

ROS:

Reactive oxygen species

SzS:

Sézary syndrome

Th3 cells:

T helper 3 cells, CD4+CD25Foxp3+ cells

Tr1 cells:

T regulatory 1 cells, CD4+CD25CTLA4+ cells

References

  1. Guenova E, Watanabe R, Teague JE, Desimone JA, Jiang Y, Dowlatshahi M, Schlapbach C, Schaekel K, Rook AH, Tawa M, Fisher DC, Kupper TS, Clark RA (2013) Th2 cytokines from malignant cells suppress Th1 responses and enforce a global Th2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res 19(14):3755–3763. https://doi.org/10.1158/1078-0432.CCR-12-3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yoo EK, Cassin M, Lessin SR, Rook AH (2001) Complete molecular remission during biologic response modifier therapy for Sezary syndrome is associated with enhanced helper T type 1 cytokine production and natural killer cell activity. J Am Acad Dermatol 45(2):208–216. https://doi.org/10.1067/mjd.2001.116345

    Article  CAS  PubMed  Google Scholar 

  3. Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM, Ubriani R, Vittorio CC, Junkins-Hopkins JM, Wysocka M, Rook AH (2005) Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Investig 115(4):798–812. https://doi.org/10.1172/JCI24826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hodak E, Lessin S, Friedland R, Freud T, David M, Pavlovsky L, Shapiro J, Cohen AD (2013) New insights into associated co-morbidities in patients with cutaneous T-cell lymphoma (mycosis fungoides). Acta Derm Venereol 93(4):451–455. https://doi.org/10.2340/00015555-1496

    Article  PubMed  Google Scholar 

  5. Bluestone JA, Bour-Jordan H, Cheng M, Anderson M (2015) T cells in the control of organ-specific autoimmunity. J Clin Investig 125(6):2250–2260. https://doi.org/10.1172/JCI78089

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peterson RA (2012) Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 40(2):186–204. https://doi.org/10.1177/0192623311430693

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Konkel JE (2015) Development of thymic Foxp3(+) regulatory T cells: TGF-beta matters. Eur J Immunol 45(4):958–965. https://doi.org/10.1002/eji.201444999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chaudhry A, Rudensky AY (2013) Control of inflammation by integration of environmental cues by regulatory T cells. J Clin Investig 123(3):939–944. https://doi.org/10.1172/JCI57175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujio K, Okamura T, Yamamoto K (2010) The family of IL-10-secreting CD4+ T cells. Adv Immunol 105:99–130. https://doi.org/10.1016/S0065-2776(10)05004-2

    Article  CAS  PubMed  Google Scholar 

  10. Beissert S, Schwarz A, Schwarz T (2006) Regulatory T cells. J Investig Dermatol 126(1):15–24. https://doi.org/10.1038/sj.jid.5700004

    Article  CAS  PubMed  Google Scholar 

  11. Whiteside TL (2012) Disarming suppressor cells to improve immunotherapy. Cancer Immunol Immunother 61(2):283–288. https://doi.org/10.1007/s00262-011-1171-7

    Article  CAS  PubMed  Google Scholar 

  12. Tadmor T, Attias D, Polliack A (2011) Myeloid-derived suppressor cells—their role in haemato-oncological malignancies and other cancers and possible implications for therapy. Br J Haematol 153(5):557–567. https://doi.org/10.1111/j.1365-2141.2011.08678.x

    Article  CAS  PubMed  Google Scholar 

  13. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Investig 125(9):3356–3364. https://doi.org/10.1172/JCI80005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sun H, Li Y, Zhang ZF, Ju Y, Li L, Zhang BC, Liu B (2015) Increase in myeloid-derived suppressor cells (MDSCs) associated with minimal residual disease (MRD) detection in adult acute myeloid leukemia. Int J Hematol 102(5):579–586. https://doi.org/10.1007/s12185-015-1865-2

    Article  CAS  PubMed  Google Scholar 

  15. Jitschin R, Braun M, Buttner M, Dettmer-Wilde K, Bricks J, Berger J, Eckart MJ, Krause SW, Oefner PJ, Le Blanc K, Mackensen A, Mougiakakos D (2014) CLL-cells induce IDOhi CD14+ HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote. Blood 124(5):750–760. https://doi.org/10.1182/blood-2013-12-546416

    Article  CAS  PubMed  Google Scholar 

  16. Florcken A, Takvorian A, Singh A, Gerhardt A, Ostendorf BN, Dorken B, Pezzutto A, Westermann J (2015) Myeloid-derived suppressor cells in human peripheral blood: optimized quantification in healthy donors and patients with metastatic renal cell carcinoma. Immunol Lett 168(2):260–267. https://doi.org/10.1016/j.imlet.2015.10.001

    Article  PubMed  Google Scholar 

  17. Huang H, Zhang G, Li G, Ma H, Zhang X (2015) Circulating CD14(+)HLA-DR(−/low) myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC. Tumour Biol 36(10):7987–7996. https://doi.org/10.1007/s13277-015-3426-y

    Article  CAS  PubMed  Google Scholar 

  18. Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A (2012) Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 26(3):424–432. https://doi.org/10.1038/leu.2011.237

    Article  CAS  PubMed  Google Scholar 

  19. Zhang QA, Chen ZQ, Chen MH, Xu ZD (2014) The number of regular T cells and immature dendritic cells involved in mycosis fungoides is linked to the tumor stage. Eur Rev Med Pharmacol Sci 18(4):553–558

    PubMed  Google Scholar 

  20. Shareef MM, Elgarhy LH, Wasfy Rel S (2015) Expression of granulysin and Foxp3 in cutaneous T cell lymphoma and Sezary syndrome. Asian Pac J Cancer Prev 16(13):5359–5364

    Article  PubMed  Google Scholar 

  21. Tiemessen MM, Mitchell TJ, Hendry L, Whittaker SJ, Taams LS, John S (2006) Lack of suppressive CD4+ CD25+ FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma. J Investig Dermatol 126(10):2217–2223. https://doi.org/10.1038/sj.jid.5700371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shiue LH, Couturier J, Lewis DE, Wei C, Ni X, Duiv M (2015) The effect of extracorporeal photopheresis alone or in combination therapy on circulating CD4(+) Foxp3(+) CD25(−) T cells in patients with leukemic cutaneous T-cell lymphoma. Photodermatol Photoimmunol Photomed 31(4):184–194. https://doi.org/10.1111/phpp.12175

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barath S, Aleksza M, Keresztes K, Toth J, Sipka S, Szegedi G, Illes A (2006) Immunoregulatory T cells in the peripheral blood of patients with Hodgkin’s lymphoma. Acta Haematol 116(3):181–185. https://doi.org/10.1159/000094678

    Article  PubMed  Google Scholar 

  24. Heid JB, Schmidt A, Oberle N, Goerdt S, Krammer PH, Suri-Payer E, Klemke CD (2009) FOXP3+ CD25− tumor cells with regulatory function in Sezary syndrome. J Investig Dermatol 129(12):2875–2885. https://doi.org/10.1038/jid.2009.175

    Article  CAS  PubMed  Google Scholar 

  25. Hanafusa T, Matsui S, Murota H, Tani M, Iqawa K, Katayama I (2013) Increased frequency of skin-infiltrating FoxP3+ regulatory T cells as a diagnostic indicator of severe atopic dermatitis from cutaneous T cell lymphoma. Clin Exp Immunol 172(3):507–512. https://doi.org/10.1111/cei.12073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201(5):723–735. https://doi.org/10.1084/jem.20041982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St Fazekas, Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711. https://doi.org/10.1084/jem.20060772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Capriotti E, Vonderheid EC, Thoburn CJ, Wasik MA, Bahler DW, Hess AD (2008) Expression of T-plastin, FoxP3 and other tumor-associated markers by leukemic T-cells of cutaneous T-cell lymphoma. Leuk Lymphoma 49(6):1190–1201. https://doi.org/10.1080/10428190802064917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wada DA, Pittelkow MR, Comfere NI, Gibson LE, Ansell SM, Wilcox RA (2013) CD4(+)CD25(+)FOXP3(+) malignant T cells in Sezary syndrome are not necessarily functional regulatory T cells. J Am Acad Dermatol 69(3):485–489. https://doi.org/10.1016/j.jaad.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  30. Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, Jegasothy B, Wood G, Gordon M, Heald P, Oseroff A, Pinter-Brown L, Bowen G, Kuzel T, Fivenson D, Foss F, Glode M, Molina A, Knobler E, Stewart S, Cooper K, Stevens S, Craig F, Reuben J, Bacha P, Nichols J (2001) Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 19(2):376–388. https://doi.org/10.1200/JCO.2001.19.2.376

    Article  CAS  PubMed  Google Scholar 

  31. Duvic M, Geskin L, Prince HM (2013) Duration of response in cutaneous T-cell lymphoma patients treated with denileukin diftitox: results from 3 phase III studies. Clin Lymphoma Myeloma Leuk 13(4):377–384. https://doi.org/10.1016/j.clml.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  32. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174(2):636–645

    Article  CAS  PubMed  Google Scholar 

  33. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17(7):1765–1775. https://doi.org/10.1158/1078-0432.CCR-10-2672

    Article  CAS  PubMed  Google Scholar 

  34. Willemze R (2012) Cutaneous T-cell lymphoma. In: Bolognia JL, Jorizzo JL, Schaffer JV (eds) Dermatology, 3rd edn. Elsevier, London, pp 2017–2036

    Google Scholar 

  35. Olsen EA (2003) Interferon in the treatment of cutaneous T-cell lymphoma. Dermatol Ther 16(4):311–321

    Article  PubMed  Google Scholar 

  36. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9(7–8):900–909. https://doi.org/10.1016/j.intimp.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  37. Poehlein CH, Haley DP, Walker EB, Fox BA (2009) Depletion of tumor-induced Treg prior to reconstitution rescues enhanced priming of tumor-specific, therapeutic effector T cells in lymphopenic hosts. Eur J Immunol 39(11):3121–3133. https://doi.org/10.1002/eji.200939453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, Vermeer MH, Rabadan R, Ferrando A, Palomero T (2015) The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet 47(12):1465–1470. https://doi.org/10.1038/ng.3442

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Doorn R, van Kester MS, Dijkman R, Vermeer MH, Mulder AA, Szuhai K, Knijnenburg J, Boer JM, Willemze R, Tensen CP (2009) Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood 113(1):127–136. https://doi.org/10.1182/blood-2008-04-153031

    Article  PubMed  Google Scholar 

  40. Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N, Edelson RL (2005) Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105(4):1640–1647. https://doi.org/10.1182/blood-2004-06-2181

    Article  CAS  PubMed  Google Scholar 

  41. Baur AS, Lutz MB, Schierer S, Beltrame L, Theiner G, Zinser E, Ostalecki C, Heidkamp G, Haendle I, Erdmann M, Wiesinger M, Leisgang W, Gross S, Pommer AJ, Kampgen E, Dudziak D, Steinkasserer A, Cavalieri D, Schuler-Thurner B, Schuler G (2013) Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 122(13):2185–2194. https://doi.org/10.1182/blood-2012-09-456988

    Article  CAS  PubMed  Google Scholar 

  42. Muratori C, Cavallin LE, Kratzel K, Tinari A, De Milito A, Fais S, D’Aloja P, Federico M, Vullo V, Fomina A, Mesri EA, Superti F, Baur AS (2009) Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6(3):218–230. https://doi.org/10.1016/j.chom.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  43. Chuang CM, Hoory T, Monie A, Wu A, Wang MC, Hung CF (2009) Enhancing therapeutic HPV DNA vaccine potency through depletion of CD4+CD25+ T regulatory cells. Vaccine 27(5):684–689. https://doi.org/10.1016/j.vaccine.2008.11.042

    Article  CAS  PubMed  Google Scholar 

  44. Castano E, Glick S, Wolgast L, Naeem R, Sunkara J, Elston D, Jacobson M (2013) Hypopigmented mycosis fungoides in childhood and adolescence: a long-term retrospective study. J Cutan Pathol 40(11):924–934. https://doi.org/10.1111/cup.12217

    Article  PubMed  Google Scholar 

  45. Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, Wiedemeyer K, Bedke T, Johnson TS, Storn V, Schallenberg S, Enk AH (2007) Depletion of CD4+ CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120(12):2723–2733. https://doi.org/10.1002/ijc.22617

    Article  CAS  PubMed  Google Scholar 

  46. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560. https://doi.org/10.1158/0008-5472.CAN-08-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weiss JM, Subleski JJ, Back T, Chen X, Watkins SK, Yagita H, Sayers TJ, Murphy WJ, Wiltrout RH (2014) Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo fas-dependent cell death during IL-2/alphaCD40 therapy. J Immunol 192(12):5821–5829. https://doi.org/10.4049/jimmunol.1400404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sean M. Alber (University of Pittsburgh Department of Cell Biology) for assisting with images capture and analysis, Laura Strauss and Mary Jo Buffo for technical assistance with Treg functionality assay. We thank Dan Ilkovitch, MD, Ph.D. for the critical reading of the manuscript. We would like to thank the patients who volunteered their time and made this effort possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis D. Falo Jr..

Ethics declarations

Funding

This work was supported by Research Center Grants for Specialized Programs of Research of Excellence (P50CA121973) of National Institute of Health, Clinical and Translational Science and M01 Award of National Center for Research Resources.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geskin, L.J., Akilov, O.E., Kwon, S. et al. Therapeutic reduction of cell-mediated immunosuppression in mycosis fungoides and Sézary syndrome. Cancer Immunol Immunother 67, 423–434 (2018). https://doi.org/10.1007/s00262-017-2090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2090-z

Keywords

Navigation