Skip to main content
Log in

Circulating CD14+HLA-DR−/low myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC

  • Research Article
  • Published:
Tumor Biology

Abstract

Accumulating evidences demonstrate that a population of suppressive cells known as myeloid-derived suppressor cells (MDSCs) is key immune modulators which suppress antitumor immunity. In this study, we found that the level of circulating CD14+HLA-DR−/low cells in patients was significantly higher than that of healthy donors and was correlated with tumor burden, lymph node metastasis, and tumor, node, and metastasis (TNM) clinical stage. More importantly, we for the first time find the level of CD14+HLA-DR−/low is a biological indicator of poor prognosis through the analysis of 3-year overall survival. Furthermore, we evidenced that the proportion of CD14+HLA-DR−/low cells in the tumor metastatic tumor-draining lymph nodes (TDLNs) was notably higher compared to tumor-free TDLNs. Additionally, CD14+HLA-DR−/low cells from esophageal squamous cell carcinoma (ESCC) patients expressed dramatically increased programmed death ligand 1 (PD-L1) comparing to that from healthy control. Subsequently, blocking PD-L1 pathway by antibody could effectively reverse the suppressive effect on autologous T cell proliferation mediated by CD14+HLA-DR−/low cells in vitro. In conclusion, our data revealed CD14+HLA-DR−/low MDSCs which increase in ESCC patients is a novel poor prognostic indicator and may exert immunosuppressive properties through PD-L1/PD-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MDSCs:

Myeloid-derived suppressor cells

ESCC:

Esophageal squamous cell carcinoma

PD-L1:

Programmed death ligand 1

TDLNs:

Tumor-draining lymph nodes

PBMCs:

Peripheral blood mononuclear cells

ARG-1:

Arginase-1

ROS:

Reactive oxygen species

iNOS:

Inducible nitric oxide synthase

TGF-β:

Transforming growth factor β

Tregs:

Regulatory T cells

PIR-B:

Paired immunoglobulin-like receptors B

CFSE:

Carboxyfluorescein succinimidyl ester

References

  1. Poschke I, Mougiakakos D, Kiessling R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother. 2011;60:1161–71.

    Article  CAS  PubMed  Google Scholar 

  2. Talmadge JE. Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol. 2011;21:131–8.

    Article  CAS  PubMed  Google Scholar 

  3. Whiteside TL. Immune responses to malignancies. J Allergy Clin Immunol. 2010;125:S272–283.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166:678–89.

    Article  CAS  PubMed  Google Scholar 

  5. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58:49–59.

    Article  CAS  PubMed  Google Scholar 

  6. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117:1155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 2008;135:871–81.

    Article  CAS  PubMed  Google Scholar 

  8. Brys L, Beschin A, Raes G, Ghassabeh GH, Noel W, Brandt J, et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol. 2005;174:6095–104.

    Article  CAS  PubMed  Google Scholar 

  9. Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 2006;176:2085–94.

    Article  CAS  PubMed  Google Scholar 

  10. Angulo I, de las Heras FG, Garcia-Bustos JF, Gargallo D, Munoz-Fernandez MA, Fresno M. Nitricoxide-producing CD11b+Ly-6G(Gr-1)+CD31(ER-MP12)+ cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood. 2000;95:212–20.

    CAS  PubMed  Google Scholar 

  11. Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, et al. CD11b+Ly-6Chi suppressive monocytes in experimental auto-immune encephalomyelitis. J Immunol. 2007;179:5228–37.

    Article  CAS  PubMed  Google Scholar 

  12. Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun. 2008;31:354–61.

    Article  CAS  PubMed  Google Scholar 

  13. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181:5791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hestdal K, Ruscetti FW, Ihle JN, Jacobsen SE, Dubois CM, Kopp WC, et al. Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J Immunol. 1991;147:22–8.

    CAS  PubMed  Google Scholar 

  15. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13:721s–6s.

    Article  CAS  PubMed  Google Scholar 

  16. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65:3044–8.

    CAS  PubMed  Google Scholar 

  17. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25:2546–53.

    Article  CAS  PubMed  Google Scholar 

  18. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010;70:4335–45.

    Article  CAS  PubMed  Google Scholar 

  19. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells. Gastroenterology. 2008;135:234–43.

    Article  CAS  PubMed  Google Scholar 

  20. Gordon IO, Freedman RS. Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res. 2006;12:1515–24.

    Article  CAS  PubMed  Google Scholar 

  21. Vuk-Pavlović S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, et al. Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate. 2010;70:443–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chikamatsu K, Sakakura K, Toyoda M, Takahashi K, Yamamoto T, Masuyama K. Immunosuppressive activity of CD14+HLA-DR- cells in squamous cell carcinoma of the head and neck. Cancer Sci. 2012;103:976–83.

    Article  CAS  PubMed  Google Scholar 

  23. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  25. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355:11–20.

    Article  CAS  PubMed  Google Scholar 

  26. Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, et al. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol. 2008;26:1086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Young MR, Newby M, Wepsic TH. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 1987;47:100–5.

    CAS  PubMed  Google Scholar 

  28. Buessow SC, Paul RD, Lopez DM. Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice. J Natl Cancer Inst. 1984;73:249–55.

    CAS  PubMed  Google Scholar 

  29. Strober S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol. 1984;2:219–37.

    Article  CAS  PubMed  Google Scholar 

  30. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67:425–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sceneay J, Chow MT, Chen A, Halse HM, Wong CS, Andrews DM, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 2012;72:3906–11.

    Article  CAS  PubMed  Google Scholar 

  32. Boutte AM, McDonald WH, Shyr Y, Yang L, Lin PC. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS ONE. 2011;6:e22446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu F, Shi Y, Wang J, Li J, Fan D, Ai W. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells. Int J Cancer. 2013;133:2872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodriguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008;222:180–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68:5439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 2006;55:237–45.

    Article  PubMed  Google Scholar 

  38. Ostrand-Rosenberg S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 2010;59:1593–600.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bianchi G, Vuerich M, Pellegatti P, Marimpietri D, Emionite L, Marigo I, et al. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis. 2014;5:e1135. doi:10.1038/cddis.2014.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Crosstalk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179:977–83.

    Article  CAS  PubMed  Google Scholar 

  41. Minu KS, Li Z, Harris-White M, Upendra K, Min H, Ming F, et al. Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS ONE. 2012;7:e40677.

    Article  Google Scholar 

  42. Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T, et al. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity. 2011;34:385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–61.

    Article  CAS  PubMed  Google Scholar 

  44. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 31300746 to H.H., 81372276 to G.Z., 31320103918 to X.Z.), the Natural Science Foundation of Jiangsu (Grant BK20131158 to G.Z.), and by the Natural Science Foundation of Suzhou (Grant SYS201323 to H.H.).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao Ma or Xueguang Zhang.

Additional information

Haitao Huang and Guangbo Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Zhang, G., Li, G. et al. Circulating CD14+HLA-DR−/low myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC. Tumor Biol. 36, 7987–7996 (2015). https://doi.org/10.1007/s13277-015-3426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3426-y

Keywords

Navigation