Skip to main content
Log in

Preoperative determination of pathological grades of primary single HCC: development and validation of a scoring model

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to establish a reliable diagnostic score model for the preoperative determination of pathological grade in HCC based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced MRI and biochemical indicators.

Methods

In this retrospective study, we analyzed 139 patients with HCC who underwent Gd-EOB-DTPA MRI between 2014 and 2020, including an establishment cohort of 76 patients and a validation cohort of 63 patients. Based on the imaging features demonstrated on Gd-EOB-DTPA MRI images and biochemical indicators of the establishment cohort, a scoring model based on logistic regression was developed, and compared with postoperative pathological findings in terms of effective determination of pathological grade. The validity of the scoring model was assessed by ROC curves and an independent external validation cohort.

Results

Three parameters related to pathological grades were identified, including maximum diameter of the tumor, peritumoral hypointensity in the hepatobiliary phase, and [alkaline phosphatase (U/L) + gamma glutamyl transpeptidase (U/L)]/ lymphocyte count (× 109/L) (AGLR) ratios. Based on these three parameters, a scoring model was developed. ROC curve showed that a score of > 5 was set as the threshold for determining pathological grades with accuracy, sensitivity, specificity, PPV, and NPV of 89.5%, 75.0%, 95.1%, 85.7%, and 90.7%, respectively.

Conclusion

The study provided the groundwork for a promising and easily implementable scoring model for preoperative determination of HCC pathological grades, for which further validation should be pursued.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and materials support the published claims.

Code availability

Not applicable.

Abbreviations

ADC:

Apparent diffusion coefficient

AFP:

Alpha fetoprotein

ALP:

Alkaline phosphatase

AGLR:

Ratio of (ALP [U/L] + GGT [U/L]) / lymphocyte count (× 109/L)

Gd-EOB-DTPA:

Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid

GGT:

Gamma glutamyl transpeptidase

HBP:

Hepatobiliary phase

HCC:

Hepatocellular carcinoma

Max-D:

Maximum diameter of the tumor

NLR:

Neutrophil-to-lymphocyte ratio

NPD:

Non-poorly differentiated

PD:

Poorly differentiated

PLR:

Platelet-to-lymphocyte ratio

ROC:

Receiver operating characteristic

References

  1. Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380:1450-1462. https://doi.org/10.1056/NEJMra1713263

    Article  CAS  PubMed  Google Scholar 

  2. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet 391: 1301-1314. https://doi.org/10.1016/S0140-6736(18)30010-2

    Article  PubMed  Google Scholar 

  3. Marrero JA, Kulik LM, Sirlin CB, et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68:723-750. https://doi.org/10.1002/hep.29913

    Article  PubMed  Google Scholar 

  4. Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42:1208–1236. https://doi.org/10.1002/hep.20933.

    Article  PubMed  Google Scholar 

  5. Levi Sandri GB, Spoletini G, Vennarecci G, et al (2018) Laparoscopic liver resection for large HCC: short-and long-term outcomes in relation to tumor size. Surg Endosc 32:4772-4779. https://doi.org/10.1007/s00464-018-6225-x

    Article  PubMed  Google Scholar 

  6. Chen DB, Li Z, Zhu WH, et al (2019) Stromal morphological changes and immunophenotypic features of precancerous lesions and hepatocellular carcinoma. J Clin Pathol 72:295-303. https://doi.org/10.1136/jclinpath-2018- 205611

    Article  CAS  PubMed  Google Scholar 

  7. Kaissis GA, Lohfer FK, Hrl M, et al (2020) Combined DCE-MRI-and FDG-PET enable histopathological grading prediction in a rat model of hepatocellular carcinoma. Eur J Radiol 124108848. https://doi.org/10.1016/j.ejrad.2020.108848

    Article  PubMed  Google Scholar 

  8. Cositha S, Edward JG, Ken L,et al (2020) Current perspectives on the tumor microenvironment in hepatocellular carcinoma. Hepatol Int 14:947-957. https://doi.org/10.1007/s12072-020-10104-3

    Article  Google Scholar 

  9. Ahn SJ, Kim JH, Park SJ, et al (2019) Hepatocellular carcinoma: preoperative gadoxetic acid-enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis. Abdom Radiol 44:539-548. https://doi.org/10.1007/s00261-018-1768-9

    Article  Google Scholar 

  10. Nishie A, Asayama Y, Ishigami K, et al (2014) Clinicopathological significance of the peritumoral decreased uptake area of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid in hepatocellular carcinoma. J Gastroenterol Hepatol 29:561-567. https://doi.org/10.1111/jgh.12423

    Article  CAS  PubMed  Google Scholar 

  11. Sanghee L, Seong HK, Cheol KP, et al (2010) Comparison between areas with Gd-EOB-DTPA uptake and without in hepatocellular carcinomas on Gd-EOB-DTPA-enhanced hepatobiliary-phase MR imaging: pathological correlation. J Magn Reson Imaging 32:719-725. https://doi.org/10.1002/jmri. 22291

    Article  Google Scholar 

  12. An C, Park MS, Jeon HM,et al (2012) Prediction of the histopathological grade of hepatocellular carcinoma using qualitative diffusion-weighted, dynamic, and hepatobiliary phase MRI. Eur Radiol 22:1701-1708. https://doi.org/10.1007/s00330-012-2421-6

    Article  PubMed  Google Scholar 

  13. Liao Y, Wei RY, Yao RZ, et al (2021) AGLR is a novel index for the prognosis of hepatocellular carcinoma patients: a retrospective study. BMC Surg 21:72. https://doi.org/10.1186/s12893-020-01037-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lisa MS, Joseph MM, Ralph BD, et al (2004) Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat Med 23:1631-1660. https://doi.org/10.1002/sim.1742

    Article  Google Scholar 

  15. Imura S, Teraoku H, Yoshikawa M, et al (2018) Potential predictive factors for microvascular invasion in hepatocellular carcinoma classified within the Milan criteria. Int J Clin Oncol 23:98-103. https://doi.org/10.1007/s10147-017-1189-8

    Article  PubMed  Google Scholar 

  16. Liu S, Li H, Guo L, et al (2019) Tumor size affects efficacy of adjuvant transarterial chemoembolization in patients with hepatocellular carcinoma and microvascular invasion. Oncologist 24:513-520. https://doi.org/10.1634/the oncologist.2018-0305

    Article  CAS  PubMed  Google Scholar 

  17. Renzulli M, Brocchi S, Cucchetti A, et al (2016) Can current preoperative imaging be used to detect microvascular invasion of hepatocellular Carcinoma? Radiology 279:432-442. https://doi.org/10.1148/radiol.2015150998

    Article  PubMed  Google Scholar 

  18. Kim KA, Kim MJ, Jeon HM, et al (2012) Prediction of microvascular invasion of hepatocellular carcinoma: Usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images. J Magn Reson Imaging 35:629-634. https://doi.org/10.1002/jmri.22876

    Article  PubMed  Google Scholar 

  19. Wu TH, Hatano E, Yamanaka K, et al (2016) A non-smooth tumor margin on preoperative imaging predicts microvascular invasion of hepatocellular carcinoma. Surg Today 46:1275-1281. https://doi.org/10.1007/s00595-016- 1320-x

    Article  CAS  PubMed  Google Scholar 

  20. Yang D, She H, Wang X, et al (2020) Diagnostic accuracy of quantitative diffusion parameters in the pathological grading of hepatocellular carcinoma: A meta-analysis. J Magn Reson Imaging 51:1581-1593. https://doi.org/10.1002/jmri. 26963

    Article  PubMed  Google Scholar 

  21. Isabel TS, Lynn JS, Julius C, Khaled B, Evan C, Fabian LG, et al (2020) Neutrophil-to-lymphocyte and Platelet-To-Lymphocyte Ratios as Predictors of Tumor Response in Hepatocellular Carcinoma After DEB-TACE. Eur Radiol 30:5663-5673. https://doi.org/10.1007/s00330-020-06931-5

    Article  CAS  Google Scholar 

  22. Nitta H, Allard MA, Sebagh M, et al (2019) Predictive model for microvascular invasion of hepatocellular carcinoma among candidates for either hepatic resection or liver transplantation. Surgery 165:1168-1175. https://doi.org/10.1016/j.surg.2019.01.012

    Article  PubMed  Google Scholar 

  23. WHO Classification of tumors: Digestive system tumours (2021) 5th ed. Lyon, France. https://whobluebooks.iarc.fr/publications/index.php

  24. Bing M, Lian ZZ, Pei GN, et al (2020) Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Eur Radiol 30:6924-6932. https://doi.org/10.1007/s00330-020-07056-5

    Article  Google Scholar 

  25. Wu MH, Tan HN, Gao F, et al (2019) Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol 29:2802-2811. https://doi.org/10.1007/s00330-018-5787-2

    Article  PubMed  Google Scholar 

  26. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, et al (2019) Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int 13:546-559. https://doi.org/10.1007/s12072-019-09973-0

    Article  PubMed  Google Scholar 

  27. Isabella FW, Hitesh M, Christoph JA, et al (2020) Reliability and Prognostic Value of Radiomic Features Are Highly Dependent on Choice of Feature Extraction Platform. Eur Radiol 30:6241-6250. https://doi.org/10.1007/s00330-020-06957-9

    Article  Google Scholar 

  28. Rong D, Liu W, Kuang S, et al (2021) Preoperative prediction of pathologic grade of HCC on gadobenate dimeglumine-enhanced dynamic MRI. Eur Radiol 31:7584-7593. https://doi.org/10.1007/s00330-021-07891-0

    Article  CAS  PubMed  Google Scholar 

  29. Li G, Gao J, Tao YL, et al (2012) Increased pretreatment levels of serum LDH and ALP as poor prognostic factors for nasopharyngeal carcinoma. Chin J Cance 31:197-206. https://doi.org/10.5732/cjc.011.10283

    Article  CAS  Google Scholar 

  30. Yamamoto K, Awogi T, Okuyama K, et al (2003) Nuclear localization of alkaline phosphatase in cultured human cancer cells. Med Electron Microsc 36:47-51. https://doi.org/10.1007/s007950300006

    Article  CAS  PubMed  Google Scholar 

  31. Pratt DS, Kaplan MM (2000) Evaluation of abnormal liver-enzyme results in asymptomatic patients. N Engl J Med 342:1266-1271. https://doi.org/10.1056/NEJM200004273421707

    Article  CAS  PubMed  Google Scholar 

  32. Jiao J, Zhao X, Hou R, et al (2019) Comparison of two commonly used methods for stimulating T cells. Biotechnol Lett 41:1361-71. https://doi.org/10.1007/s10529-019-02743-w

    Article  CAS  PubMed  Google Scholar 

  33. Levi GB, Spoletini G, Vennarecci G, et al (2018) Laparoscopic liver resection for large HCC: short-and long-term outcomes in relation to tumor size. Surg Endosc 32:4772-4779. https://doi.org/10.1007/s00464-018-6225-x

    Article  Google Scholar 

  34. Mengqi H, Shunli S, Huasong C, et al (2021) Regional liver function analysis with gadoxetic acid-enhanced MRI and virtual hepatectomy: prediction of postoperative short-term outcomes for HCC. Eur Radiol 31:4720-4730. https://doi.org/10.1007/s00330-020-07606-x

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Zhi-Wei Shen) is an employee of Philips Healthcare. The remaining authors declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

This study was funded by the National Natural Science Fund of China (81901710); National Natural Science Fund of China (81873888). Science and Technology fund of Tianjin (QN20024). Science and Technology fund of Tianjin (TJWJ2021QN011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Xiang Ye or Wen Shen.

Ethics declarations

Conflict of interest

One of the authors (Zhi-Wei Shen) is an employee of Philips Healthcare. The remaining authors declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Ethical approval

This study was approved by the ethics committee of our hospital.

Consent to participate

Approved by all authors.

Consent for publication

Approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Li, WC., Xie, SS. et al. Preoperative determination of pathological grades of primary single HCC: development and validation of a scoring model. Abdom Radiol 47, 3468–3477 (2022). https://doi.org/10.1007/s00261-022-03606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03606-1

Keywords

Navigation