Skip to main content

Advertisement

Log in

Abdominal applications of quantitative 4D flow MRI

  • Special Section : Quantitative Imaging
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

4D flow MRI is a quantitative MRI technique that allows the comprehensive assessment of time-resolved hemodynamics and vascular anatomy over a 3-dimensional imaging volume. It effectively combines several advantages of invasive and non-invasive imaging modalities like ultrasound, angiography, and computed tomography in a single MRI acquisition and provides an unprecedented characterization of velocity fields acquired non-invasively in vivo. Functional and morphological imaging of the abdominal vasculature is especially challenging due to its complex and variable anatomy with a wide range of vessel calibers and flow velocities and the need for large volumetric coverage. Despite these challenges, 4D flow MRI is a promising diagnostic and prognostic tool as many pathologies in the abdomen are associated with changes of either hemodynamics or morphology of arteries, veins, or the portal venous system. In this review article, we will discuss technical aspects of the implementation of abdominal 4D flow MRI ranging from patient preparation and acquisition protocol over post-processing and quality control to final data analysis. In recent years, the range of applications for 4D flow in the abdomen has increased profoundly. Therefore, we will review potential clinical applications and address their clinical importance, relevant quantitative and qualitative parameters, and unmet challenges.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36(5): 1015-1036. https://doi.org/10.1002/jmri.23632

    Article  PubMed  Google Scholar 

  2. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17(1): 72. https://doi.org/10.1186/s12968-015-0174-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roldan-Alzate A, Francois CJ, Wieben O, Reeder SB (2016) Emerging Applications of Abdominal 4D Flow MRI. AJR. American journal of roentgenology 207(1): 58-66. https://doi.org/10.2214/AJR.15.15995

    Article  PubMed  PubMed Central  Google Scholar 

  4. Riedel C, Lenz A, Fischer L, Li J, Piecha F, Kluwe J, Adam G, Bannas P (2021) Abdominal Applications of 4D Flow MRI. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 193(4): 388-398. https://doi.org/10.1055/a-1271-7405

    Article  PubMed  Google Scholar 

  5. Frydrychowicz A, Roldan-Alzate A, Winslow E, Consigny D, Campo CA, Motosugi U, Johnson KM, Wieben O, Reeder SB (2017) Comparison of radial 4D Flow-MRI with perivascular ultrasound to quantify blood flow in the abdomen and introduction of a porcine model of pre-hepatic portal hypertension. Eur Radiol 27(12): 5316-5324. https://doi.org/10.1007/s00330-017-4862-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stankovic Z, Csatari Z, Deibert P, Euringer W, Blanke P, Kreisel W, Abdullah Zadeh Z, Kallfass F, Langer M, Markl M (2012) Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology 262(3): 862-873. https://doi.org/10.1148/radiol.11110127

    Article  PubMed  Google Scholar 

  7. Stankovic Z, Csatari Z, Deibert P, Euringer W, Jung B, Kreisel W, Geiger J, Russe MF, Langer M, Markl M (2013) A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. European journal of gastroenterology & hepatology 25(6): 669-675. https://doi.org/10.1097/MEG.0b013e32835e1297

    Article  Google Scholar 

  8. Wentland AL, Grist TM, Wieben O (2013) Repeatability and internal consistency of abdominal 2D and 4D phase contrast MR flow measurements. Acad Radiol 20(6): 699-704. https://doi.org/10.1016/j.acra.2012.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stankovic Z, Frydrychowicz A, Csatari Z, Panther E, Deibert P, Euringer W, Kreisel W, Russe M, Bauer S, Langer M, Markl M (2010) MR-based visualization and quantification of three-dimensional flow characteristics in the portal venous system. J Magn Reson Imaging 32(2): 466-475. https://doi.org/10.1002/jmri.22248

    Article  PubMed  Google Scholar 

  10. Takehara Y, Isoda H, Takahashi M, Unno N, Shiiya N, Ushio T, Goshima S, Naganawa S, Alley M, Wakayama T, Nozaki A (2020) Abnormal Flow Dynamics Result in Low Wall Shear Stress and High Oscillatory Shear Index in Abdominal Aortic Dilatation: Initial in vivo Assessment with 4D-flow MRI. Magn Reson Med Sci 19(3): 235-246. https://doi.org/10.2463/mrms.mp.2019-0188

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stankovic Z, Jung B, Collins J, Russe MF, Carr J, Euringer W, Stehlin L, Csatari Z, Strohm PC, Langer M, Markl M (2014) Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution. Magn Reson Med 72(2): 477-484. https://doi.org/10.1002/mrm.24939

    Article  PubMed  Google Scholar 

  12. Roldan-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM, Wieben O, Reeder SB (2013) In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging 37(5): 1100-1108. https://doi.org/10.1002/jmri.23906

    Article  PubMed  Google Scholar 

  13. Roldan-Alzate A, Frydrychowicz A, Said A, Johnson KM, Francois CJ, Wieben O, Reeder SB (2015) Impaired regulation of portal venous flow in response to a meal challenge as quantified by 4D flow MRI. J Magn Reson Imaging 42(4): 1009-1017. https://doi.org/10.1002/jmri.24886

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roberts GS, Francois CJ, Starekova J, Roldan-Alzate A, Wieben O (2021) Non-invasive assessment of mesenteric hemodynamics in patients with suspected chronic mesenteric ischemia using 4D flow MRI. Abdom Radiol (NY). https://doi.org/10.1007/s00261-020-02900-0

    Article  Google Scholar 

  15. Brunsing RL, Brown D, Almahoud H, Kono Y, Loomba R, Vodkin I, Sirlin CB, Alley MT, Vasanawala SS, Hsiao A (2021) Quantification of the Hemodynamic Changes of Cirrhosis with Free-Breathing Self-Navigated MRI. J Magn Reson Imaging 53(5): 1410-1421. https://doi.org/10.1002/jmri.27488

    Article  PubMed  PubMed Central  Google Scholar 

  16. Francois CJ, Lum DP, Johnson KM, Landgraf BR, Bley TA, Reeder SB, Schiebler ML, Grist TM, Wieben O (2011) Renal arteries: isotropic, high-spatial-resolution, unenhanced MR angiography with three-dimensional radial phase contrast. Radiology 258(1): 254-260. https://doi.org/10.1148/radiol.10100443

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bannas P, Roldan-Alzate A, Johnson KM, Woods MA, Ozkan O, Motosugi U, Wieben O, Reeder SB, Kramer H (2016) Longitudinal Monitoring of Hepatic Blood Flow before and after TIPS by Using 4D-Flow MR Imaging. Radiology 281(2): 574-582. https://doi.org/10.1148/radiol.2016152247

    Article  PubMed  Google Scholar 

  18. Bane O, Said D, Weiss A, Stocker D, Kennedy P, Hectors SJ, Khaim R, Salem F, Delaney V, Menon MC, Markl M, Lewis S, Taouli B (2021) 4D flow MRI for the assessment of renal transplant dysfunction: initial results. Eur Radiol 31(2): 909-919. https://doi.org/10.1007/s00330-020-07208-7

    Article  PubMed  Google Scholar 

  19. Keller EJ, Kulik L, Stankovic Z, Lewandowski RJ, Salem R, Carr JC, Schnell S, Markl M, Collins JD (2017) JOURNAL CLUB: Four-Dimensional Flow MRI-Based Splenic Flow Index for Predicting Cirrhosis-Associated Hypersplenism. AJR. American journal of roentgenology 209(1): 46-54. https://doi.org/10.2214/AJR.16.17620

    Article  PubMed  Google Scholar 

  20. Someya N, Endo MY, Fukuba Y, Hayashi N (2008) Blood flow responses in celiac and superior mesenteric arteries in the initial phase of digestion. American journal of physiology. Regulatory, integrative and comparative physiology 294(6): R1790-1796. https://doi.org/10.1152/ajpregu.00553.2007

  21. Sidery MB, Macdonald IA, Blackshaw PE (1994) Superior mesenteric artery blood flow and gastric emptying in humans and the differential effects of high fat and high carbohydrate meals. Gut 35(2): 186-190. https://doi.org/10.1136/gut.35.2.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall Barrientos P, Knight K, Black D, Vesey A, Roditi G (2021) A pilot study investigating the use of 4D flow MRI for the assessment of splanchnic flow in patients suspected of mesenteric ischaemia. Sci Rep 11(1): 5914. https://doi.org/10.1038/s41598-021-85315-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nayak KS, Nielsen JF, Bernstein MA, Markl M, P DG, R MB, Saloner D, Lorenz C, Wen H, B SH, Epstein FH, J NO, Raman SV (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17(1): 71. https://doi.org/10.1186/s12968-015-0172-7

  24. Bane O, Peti S, Wagner M, Hectors S, Dyvorne H, Markl M, Taouli B (2019) Hemodynamic measurements with an abdominal 4D flow MRI sequence with spiral sampling and compressed sensing in patients with chronic liver disease. J Magn Reson Imaging 49(4): 994-1005. https://doi.org/10.1002/jmri.26305

    Article  PubMed  Google Scholar 

  25. Dyvorne H, Knight-Greenfield A, Jajamovich G, Besa C, Cui Y, Stalder A, Markl M, Taouli B (2015) Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 275(1): 245-254. https://doi.org/10.1148/radiol.14140973

    Article  PubMed  Google Scholar 

  26. Ziegler M, Welander M, Lantz J, Lindenberger M, Bjarnegard N, Karlsson M, Ebbers T, Lanne T, Dyverfeldt P (2019) Visualizing and quantifying flow stasis in abdominal aortic aneurysms in men using 4D flow MRI. Magn Reson Imaging 57: 103-110. https://doi.org/10.1016/j.mri.2018.11.003

    Article  PubMed  Google Scholar 

  27. Sekine T, Amano Y, Takagi R, Matsumura Y, Murai Y, Kumita S (2014) Feasibility of 4D Flow MR Imaging of the Brain with Either Cartesian y-z Radial Sampling or k-t SENSE: Comparison with 4D Flow MR Imaging using SENSE. Magnetic Resonance in Medical Sciences advpub. https://doi.org/10.2463/mrms.2013-0008

    Article  Google Scholar 

  28. Stankovic Z, Fink J, Collins JD, Semaan E, Russe MF, Carr JC, Markl M, Langer M, Jung B (2015) K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow. MAGMA 28(2): 149-159. https://doi.org/10.1007/s10334-014-0456-1

    Article  CAS  PubMed  Google Scholar 

  29. Neuhaus E, Weiss K, Bastkowski R, Koopmann J, Maintz D, Giese D (2019) Accelerated aortic 4D flow cardiovascular magnetic resonance using compressed sensing: applicability, validation and clinical integration. J Cardiovasc Magn Reson 21(1): 65. https://doi.org/10.1186/s12968-019-0573-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ma LE, Markl M, Chow K, Huh H, Forman C, Vali A, Greiser A, Carr J, Schnell S, Barker AJ, Jin N (2019) Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn Reson Med 81(6): 3675-3690. https://doi.org/10.1002/mrm.27684

    Article  PubMed  PubMed Central  Google Scholar 

  31. Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28(2): 275-289. https://doi.org/10.1002/mrm.1910280209

    Article  CAS  PubMed  Google Scholar 

  32. Anderson AG, 3rd, Velikina J, Block W, Wieben O, Samsonov A (2013) Adaptive retrospective correction of motion artifacts in cranial MRI with multicoil three-dimensional radial acquisitions. Magn Reson Med 69(4): 1094-1103. https://doi.org/10.1002/mrm.24348

    Article  PubMed  Google Scholar 

  33. Keller EJ, Collins JD, Rigsby C, Carr JC, Markl M, Schnell S (2017) Superior Abdominal 4D Flow MRI Data Consistency with Adjusted Preprocessing Workflow and Noncontrast Acquisitions. Acad Radiol 24(3): 350-358. https://doi.org/10.1016/j.acra.2016.10.007

    Article  PubMed  Google Scholar 

  34. Motosugi U, Roldan-Alzate A, Bannas P, Said A, Kelly S, Zea R, Wieben O, Reeder SB (2019) Four-dimensional Flow MRI as a Marker for Risk Stratification of Gastroesophageal Varices in Patients with Liver Cirrhosis. Radiology 290(1): 101-107. https://doi.org/10.1148/radiol.2018180230

    Article  PubMed  Google Scholar 

  35. Landgraf BR, Johnson KM, Roldan-Alzate A, Francois CJ, Wieben O, Reeder SB (2014) Effect of temporal resolution on 4D flow MRI in the portal circulation. J Magn Reson Imaging 39(4): 819-826. https://doi.org/10.1002/jmri.24233

    Article  PubMed  Google Scholar 

  36. Parekh K, Markl M, Rose M, Schnell S, Popescu A, Rigsby CK (2017) 4D flow MR imaging of the portal venous system: a feasibility study in children. Eur Radiol 27(2): 832-840. https://doi.org/10.1007/s00330-016-4396-1

    Article  PubMed  Google Scholar 

  37. Owen JW, Saad NE, Foster G, Fowler KJ (2018) The Feasibility of Using Volumetric Phase-Contrast MR Imaging (4D Flow) to Assess for Transjugular Intrahepatic Portosystemic Shunt Dysfunction. Journal of vascular and interventional radiology : JVIR 29(12): 1717-1724. https://doi.org/10.1016/j.jvir.2018.07.022

    Article  PubMed  Google Scholar 

  38. Ma LE, Yerly J, Piccini D, Di Sopra L, Roy CW, Carr JC, Rigsby CK, Kim D, Stuber M, Markl M (2020) 5D Flow MRI: A Fully Self-gated, Free-running Framework for Cardiac and Respiratory Motion-resolved 3D Hemodynamics. Radiol Cardiothorac Imaging 2(6): e200219. https://doi.org/10.1148/ryct.2020200219

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nayak KS, Nielsen J-F, Bernstein MA, Markl M, D. Gatehouse P, M. Botnar R, Saloner D, Lorenz C, Wen H, S. Hu B, Epstein FH, N. Oshinski J, Raman SV (2015) Cardiovascular magnetic resonance phase contrast imaging. Journal of Cardiovascular Magnetic Resonance 17(1): 71. https://doi.org/10.1186/s12968-015-0172-7

  40. Ha H, Kim GB, Kweon J, Kim YH, Kim N, Yang DH, Lee SJ (2016) Multi-VENC acquisition of four-dimensional phase-contrast MRI to improve precision of velocity field measurement. Magn Reson Med 75(5): 1909-1919. https://doi.org/10.1002/mrm.25715

    Article  CAS  PubMed  Google Scholar 

  41. Schnell S, Ansari SA, Wu C, Garcia J, Murphy IG, Rahman OA, Rahsepar AA, Aristova M, Collins JD, Carr JC, Markl M (2017) Accelerated dual-venc 4D flow MRI for neurovascular applications. J Magn Reson Imaging 46(1): 102-114. https://doi.org/10.1002/jmri.25595

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kroeger JR, Pavesio FC, Morsdorf R, Weiss K, Bunck AC, Baessler B, Maintz D, Giese D (2021) Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CMR. Eur J Radiol 137: 109570. https://doi.org/10.1016/j.ejrad.2021.109570

    Article  PubMed  Google Scholar 

  43. Moersdorf R, Treutlein M, Kroeger JR, Ruijsink B, Wong J, Maintz D, Weiss K, Bunck AC, Baessler B, Giese D (2019) Precision, reproducibility and applicability of an undersampled multi-venc 4D flow MRI sequence for the assessment of cardiac hemodynamics. Magn Reson Imaging 61: 73-82. https://doi.org/10.1016/j.mri.2019.05.015

    Article  PubMed  Google Scholar 

  44. Bock J, Frydrychowicz A, Stalder AF, Bley TA, Burkhardt H, Hennig J, Markl M (2010) 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 63(2): 330-338. https://doi.org/10.1002/mrm.22199

    Article  PubMed  Google Scholar 

  45. Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41(4): 884-898. https://doi.org/10.1002/jmri.24691

    Article  PubMed  Google Scholar 

  46. Vasanawala SS, Nguyen KL, Hope MD, Bridges MD, Hope TA, Reeder SB, Bashir MR (2016) Safety and technique of ferumoxytol administration for MRI. Magn Reson Med 75(5): 2107-2111. https://doi.org/10.1002/mrm.26151

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mukai K, Burris NS, Mahadevan VS, Foster ED, Ordovas KG, Hope MD (2018) 4D flow image quality with blood pool contrast: a comparison of gadofosveset trisodium and ferumoxytol. Int J Cardiovasc Imaging 34(2): 273-279. https://doi.org/10.1007/s10554-017-1224-x

    Article  PubMed  Google Scholar 

  48. Craiem D, Pascaner AF, Casciaro ME, Gencer U, Alcibar J, Soulat G, Mousseaux E (2019) Automatic correction of background phase offset in 4D-flow of great vessels and of the heart in MRI using a third-order surface model. MAGMA 32(6): 629-642. https://doi.org/10.1007/s10334-019-00765-z

    Article  CAS  PubMed  Google Scholar 

  49. Siedek F, Giese D, Weiss K, Ekdawi S, Brinkmann S, Schroeder W, Bruns C, Chang DH, Persigehl T, Maintz D, Haneder S (2018) 4D flow MRI for the analysis of celiac trunk and mesenteric artery stenoses. Magn Reson Imaging 53: 52-62. https://doi.org/10.1016/j.mri.2018.06.021

    Article  PubMed  Google Scholar 

  50. Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88(5 Pt 1): 2235-2247. https://doi.org/10.1161/01.cir.88.5.2235

    Article  CAS  PubMed  Google Scholar 

  51. Oechtering TH, Sieren MM, Hunold P, Hennemuth A, Huellebrand M, Scharfschwerdt M, Richardt D, Sievers HH, Barkhausen J, Frydrychowicz A (2020) Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) reveals altered blood flow patterns in the ascending aorta of patients with valve-sparing aortic root replacement. J Thorac Cardiovasc Surg 159(3): 798-810. https://doi.org/10.1016/j.jtcvs.2019.02.127

    Article  PubMed  Google Scholar 

  52. Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113(23): 2744-2753. https://doi.org/10.1161/CIRCULATIONAHA.105.590018

    Article  PubMed  Google Scholar 

  53. Davies PF, Spaan JA, Krams R (2005) Shear stress biology of the endothelium. Ann Biomed Eng 33(12): 1714-1718. https://doi.org/10.1007/s10439-005-8774-0

    Article  PubMed  Google Scholar 

  54. Kolipaka A, Illapani VS, Kalra P, Garcia J, Mo X, Markl M, White RD (2017) Quantification and comparison of 4D-flow MRI-derived wall shear stress and MRE-derived wall stiffness of the abdominal aorta. J Magn Reson Imaging 45(3): 771-778. https://doi.org/10.1002/jmri.25445

    Article  PubMed  Google Scholar 

  55. van Ooij P, Potters WV, Collins J, Carr M, Carr J, Malaisrie SC, Fedak PW, McCarthy PM, Markl M, Barker AJ (2015) Characterization of abnormal wall shear stress using 4D flow MRI in human bicuspid aortopathy. Ann Biomed Eng 43(6): 1385-1397. https://doi.org/10.1007/s10439-014-1092-7

    Article  PubMed  Google Scholar 

  56. Sotelo J, Dux-Santoy L, Guala A, Rodriguez-Palomares J, Evangelista A, Sing-Long C, Urbina J, Mura J, Hurtado DE, Uribe S (2018) 3D axial and circumferential wall shear stress from 4D flow MRI data using a finite element method and a laplacian approach. Magn Reson Med 79(5): 2816-2823. https://doi.org/10.1002/mrm.26927

    Article  PubMed  Google Scholar 

  57. van der Palen RLF, Roest AAW, van den Boogaard PJ, de Roos A, Blom NA, Westenberg JJM (2018) Scan-rescan reproducibility of segmental aortic wall shear stress as assessed by phase-specific segmentation with 4D flow MRI in healthy volunteers. MAGMA 31(5): 653-663. https://doi.org/10.1007/s10334-018-0688-6

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zimmermann J, Demedts D, Mirzaee H, Ewert P, Stern H, Meierhofer C, Menze B, Hennemuth A (2018) Wall shear stress estimation in the aorta: Impact of wall motion, spatiotemporal resolution, and phase noise. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26007

    Article  PubMed  Google Scholar 

  59. Safar ME, Henry O, Meaume S (2002) Aortic pulse wave velocity: an independent marker of cardiovascular risk. The American journal of geriatric cardiology 11(5): 295-304.

    Article  Google Scholar 

  60. Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, Jeppesen J (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113(5): 664-670. https://doi.org/10.1161/CIRCULATIONAHA.105.579342

    Article  PubMed  Google Scholar 

  61. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H, European Network for Non-invasive Investigation of Large A (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21): 2588-2605. https://doi.org/10.1093/eurheartj/ehl254

  62. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, Laurent S (2002) Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 39(1): 10-15. https://doi.org/10.1161/hy0102.099031

    Article  CAS  PubMed  Google Scholar 

  63. Wentland AL, Wieben O, Shanmuganayagam D, Krueger CG, Meudt JJ, Consigny D, Rivera L, McBride PE, Reed JD, Grist TM (2015) Measurements of wall shear stress and aortic pulse wave velocity in swine with familial hypercholesterolemia. J Magn Reson Imaging 41(5): 1475-1485. https://doi.org/10.1002/jmri.24681

    Article  PubMed  Google Scholar 

  64. Dyverfeldt P, Ebbers T, Lanne T (2014) Pulse wave velocity with 4D flow MRI: systematic differences and age-related regional vascular stiffness. Magn Reson Imaging 32(10): 1266-1271. https://doi.org/10.1016/j.mri.2014.08.021

    Article  PubMed  Google Scholar 

  65. Markl M, Wallis W, Brendecke S, Simon J, Frydrychowicz A, Harloff A (2010) Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn Reson Med 63(6): 1575-1582. https://doi.org/10.1002/mrm.22353

    Article  PubMed  Google Scholar 

  66. Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T (2006) Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn Reson Med 56(4): 850-858. https://doi.org/10.1002/mrm.21022

    Article  PubMed  Google Scholar 

  67. Binter C, Knobloch V, Manka R, Sigfridsson A, Kozerke S (2013) Bayesian multipoint velocity encoding for concurrent flow and turbulence mapping. Magn Reson Med 69(5): 1337-1345. https://doi.org/10.1002/mrm.24370

    Article  PubMed  Google Scholar 

  68. Ha H, Ziegler M, Welander M, Bjarnegard N, Carlhall CJ, Lindenberger M, Lanne T, Ebbers T, Dyverfeldt P (2018) Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow. Front Physiol 9: 36. https://doi.org/10.3389/fphys.2018.00036

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yang GZ, Kilner PJ, Wood NB, Underwood SR, Firmin DN (1996) Computation of flow pressure fields from magnetic resonance velocity mapping. Magn Reson Med 36(4): 520-526. https://doi.org/10.1002/mrm.1910360404

    Article  CAS  PubMed  Google Scholar 

  70. Tyszka JM, Laidlaw DH, Asa JW, Silverman JM (2000) Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging 12(2): 321-329. https://doi.org/10.1002/1522-2586(200008)12:2<321::aid-jmri15>3.0.co;2-2

  71. Ebbers T, Wigstrom L, Bolger AF, Wranne B, Karlsson M (2002) Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. Journal of biomechanical engineering 124(3): 288-293. https://doi.org/10.1115/1.1468866

    Article  CAS  PubMed  Google Scholar 

  72. Bley TA, Johnson KM, François CJ (2011) Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase-contrast MR angiography. Radiology 261: 266.

    Article  Google Scholar 

  73. Cibis M, Bustamante M, Eriksson J, Carlhall CJ, Ebbers T (2017) Creating hemodynamic atlases of cardiac 4D flow MRI. J Magn Reson Imaging 46(5): 1389-1399. https://doi.org/10.1002/jmri.25691

    Article  PubMed  PubMed Central  Google Scholar 

  74. Garcia J, Barker AJ, Murphy I, Jarvis K, Schnell S, Collins JD, Carr JC, Malaisrie SC, Markl M (2016) Four-dimensional flow magnetic resonance imaging-based characterization of aortic morphometry and haemodynamics: impact of age, aortic diameter, and valve morphology. European heart journal cardiovascular Imaging 17(8): 877-884. https://doi.org/10.1093/ehjci/jev228

    Article  PubMed  Google Scholar 

  75. Gabbert DD, Kheradvar A, Jerosch-Herold M, Oechtering TH, Uebing AS, Kramer H-H, Voges I, Rickers C (2021) MRI-based comprehensive analysis of vascular anatomy and hemodynamics. Cardiovascular diagnosis and therapy.

  76. Rutkowski DR, Roldán-Alzate A, Johnson KM (2021) Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Scientific reports 11(1): 10240-10240. https://doi.org/10.1038/s41598-021-89636-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bhathal PS, Grossman HJ (1985) Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators. Journal of hepatology 1(4): 325-337. https://doi.org/10.1016/s0168-8278(85)80770-4

    Article  CAS  PubMed  Google Scholar 

  78. Kamath PS, Tyce GM, Miller VM, Edwards BS, Rorie DK (1999) Endothelin-1 modulates intrahepatic resistance in a rat model of noncirrhotic portal hypertension. Hepatology 30(2): 401-407. https://doi.org/10.1002/hep.510300235

    Article  CAS  PubMed  Google Scholar 

  79. Garcia-Tsao G, Groszmann RJ, Fisher RL, Conn HO, Atterbury CE, Glickman M (1985) Portal pressure, presence of gastroesophageal varices and variceal bleeding. Hepatology 5(3): 419-424. https://doi.org/10.1002/hep.1840050313

    Article  CAS  PubMed  Google Scholar 

  80. Calès P, Desmorat H, Vinel JP, Caucanas JP, Ravaud A, Gerin P, Brouet P, Pascal JP (1990) Incidence of large oesophageal varices in patients with cirrhosis: application to prophylaxis of first bleeding. Gut 31(11): 1298-1302. https://doi.org/10.1136/gut.31.11.1298

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chalasani N, Imperiale TF, Ismail A, Sood G, Carey M, Wilcox CM, Madichetty H, Kwo PY, Boyer TD (1999) Predictors of large esophageal varices in patients with cirrhosis. The American journal of gastroenterology 94(11): 3285-3291. https://doi.org/10.1111/j.1572-0241.1999.1539_a.x

    Article  CAS  PubMed  Google Scholar 

  82. Saunders JB, Walters JR, Davies AP, Paton A (1981) A 20-year prospective study of cirrhosis. British medical journal (Clinical research ed.) 282(6260): 263-266. https://doi.org/10.1136/bmj.282.6260.263

    Article  CAS  Google Scholar 

  83. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J (2017) Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology 65(1): 310-335. https://doi.org/10.1002/hep.28906

    Article  PubMed  Google Scholar 

  84. Bernard B, Lebrec D, Mathurin P, Opolon P, Poynard T (1997) Beta-adrenergic antagonists in the prevention of gastrointestinal rebleeding in patients with cirrhosis: a meta-analysis. Hepatology 25(1): 63-70. https://doi.org/10.1053/jhep.1997.v25.pm0008985266

    Article  CAS  PubMed  Google Scholar 

  85. Khuroo MS, Khuroo NS, Farahat KL, Khuroo YS, Sofi AA, Dahab ST (2005) Meta-analysis: endoscopic variceal ligation for primary prophylaxis of oesophageal variceal bleeding. Aliment Pharmacol Ther 21(4): 347-361. https://doi.org/10.1111/j.1365-2036.2005.02346.x

    Article  CAS  PubMed  Google Scholar 

  86. Pascal JP, Cales P (1987) Propranolol in the prevention of first upper gastrointestinal tract hemorrhage in patients with cirrhosis of the liver and esophageal varices. N Engl J Med 317(14): 856-861. https://doi.org/10.1056/NEJM198710013171403

    Article  CAS  PubMed  Google Scholar 

  87. de Franchis R, Baveno VF (2010) Revising consensus in portal hypertension: report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension. Journal of hepatology 53(4): 762-768. https://doi.org/10.1016/j.jhep.2010.06.004

    Article  PubMed  Google Scholar 

  88. Garcia-Tsao G, Sanyal AJ, Grace ND, Carey W, Practice Guidelines Committee of the American Association for the Study of Liver D, Practice Parameters Committee of the American College of G (2007) Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 46(3): 922-938. https://doi.org/10.1002/hep.21907

  89. Liangpunsakul S, Ulmer BJ, Chalasani N (2003) Predictors and implications of severe hypersplenism in patients with cirrhosis. The American journal of the medical sciences 326(3): 111-116. https://doi.org/10.1097/00000441-200309000-00001

    Article  PubMed  Google Scholar 

  90. Qamar AA, Grace ND, Groszmann RJ, Garcia-Tsao G, Bosch J, Burroughs AK, Ripoll C, Maurer R, Planas R, Escorsell A, Garcia-Pagan JC, Patch D, Matloff DS, Makuch R, Rendon G, Portal Hypertension Collaborative G (2009) Incidence, prevalence, and clinical significance of abnormal hematologic indices in compensated cirrhosis. Clin Gastroenterol Hepatol 7(6): 689-695. https://doi.org/10.1016/j.cgh.2009.02.021

    Article  PubMed  PubMed Central  Google Scholar 

  91. Afdhal N, McHutchison J, Brown R, Jacobson I, Manns M, Poordad F, Weksler B, Esteban R (2008) Thrombocytopenia associated with chronic liver disease. Journal of hepatology 48(6): 1000-1007. https://doi.org/10.1016/j.jhep.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  92. Boyer TD, Haskal ZJ, American Association for the Study of Liver D (2010) The Role of Transjugular Intrahepatic Portosystemic Shunt (TIPS) in the Management of Portal Hypertension: update 2009. Hepatology 51(1): 306. https://doi.org/10.1002/hep.23383

  93. Allaire M, Walter A, Sutter O, Nahon P, Ganne-Carrie N, Amathieu R, Nault JC (2020) TIPS for management of portal-hypertension-related complications in patients with cirrhosis. Clin Res Hepatol Gastroenterol 44(3): 249-263. https://doi.org/10.1016/j.clinre.2019.09.003

    Article  PubMed  Google Scholar 

  94. Tripathi D, Stanley AJ, Hayes PC, Travis S, Armstrong MJ, Tsochatzis EA, Rowe IA, Roslund N, Ireland H, Lomax M, Leithead JA, Mehrzad H, Aspinall RJ, McDonagh J, Patch D (2020) Transjugular intrahepatic portosystemic stent-shunt in the management of portal hypertension. Gut 69(7): 1173-1192. https://doi.org/10.1136/gutjnl-2019-320221

    Article  PubMed  Google Scholar 

  95. Stankovic Z, Blanke P, Markl M (2012) Usefulness of 4D MRI flow imaging to control TIPS function. The American journal of gastroenterology 107(2): 327-328. https://doi.org/10.1038/ajg.2011.380

    Article  PubMed  Google Scholar 

  96. Stankovic Z, Rossle M, Euringer W, Schultheiss M, Salem R, Barker A, Carr J, Langer M, Markl M, Collins JD (2015) Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. Eur Radiol 25(9): 2634-2640. https://doi.org/10.1007/s00330-015-3663-x

    Article  PubMed  Google Scholar 

  97. McNaughton DA, Abu-Yousef MM (2011) Doppler US of the liver made simple. Radiographics 31(1): 161-188. https://doi.org/10.1148/rg.311105093

    Article  PubMed  Google Scholar 

  98. Rutkowski DR, Reeder SB, Fernandez LA, Roldan-Alzate A (2018) Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments. Comput Methods Biomech Biomed Eng Imaging Vis 6(5): 545-555. https://doi.org/10.1080/21681163.2017.1278619

    Article  PubMed  Google Scholar 

  99. Vasavada BB, Chen CL, Zakaria M (2014) Portal flow is the main predictor of early graft dysfunction regardless of the GRWR status in living donor liver transplantation - a retrospective analysis of 134 patients. Int J Surg 12(2): 177-180. https://doi.org/10.1016/j.ijsu.2013.12.006

    Article  PubMed  Google Scholar 

  100. Chiang J, Loecher M, Moulin K, Meloni MF, Raman SS, McWilliams JP, Ennis DB, Lee EW (2020) 4D Flow MR Imaging to Improve Microwave Ablation Prediction Models: A Feasibility Study in an In Vivo Porcine Liver. Journal of vascular and interventional radiology : JVIR 31(10): 1691-1696 e1691. https://doi.org/10.1016/j.jvir.2019.11.034

  101. Liu D, Fan Z, Li Y, Zhang N, Sun Z, An J, Stalder AF, Greiser A, Liu J (2018) Quantitative Study of Abdominal Blood Flow Patterns in Patients with Aortic Dissection by 4-Dimensional Flow MRI. Sci Rep 8(1): 9111. https://doi.org/10.1038/s41598-018-27249-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burris NS, Nordsletten DA, Sotelo JA, Grogan-Kaylor R, Houben IB, Figueroa CA, Uribe S, Patel HJ (2020) False lumen ejection fraction predicts growth in type B aortic dissection: preliminary results. Eur J Cardiothorac Surg 57(5): 896-903. https://doi.org/10.1093/ejcts/ezz343

    Article  PubMed  Google Scholar 

  103. Sughimoto K, Shimamura Y, Tezuka C, Tsubota K, Liu H, Okumura K, Masuda Y, Haneishi H (2016) Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging. Heart and vessels 31(7): 1168-1175. https://doi.org/10.1007/s00380-015-0758-x

    Article  PubMed  Google Scholar 

  104. Hope TA, Zarins CK, Herfkens RJ (2009) Initial experience characterizing a type I endoleak from velocity profiles using time-resolved three-dimensional phase-contrast MRI. Journal of vascular surgery 49(6): 1580-1584. https://doi.org/10.1016/j.jvs.2009.01.010

    Article  PubMed  Google Scholar 

  105. Takei Y, Itatani K, Miyazaki S, Shibasaki I, Fukuda H (2019) Four-dimensional flow magnetic resonance imaging analysis before and after thoracic endovascular aortic repair of chronic type B aortic dissection. Interact Cardiovasc Thorac Surg 28(3): 413-420. https://doi.org/10.1093/icvts/ivy271

    Article  PubMed  Google Scholar 

  106. Sakata M, Takehara Y, Katahashi K, Sano M, Inuzuka K, Yamamoto N, Sugiyama M, Sakahara H, Wakayama T, Alley MT, Konno H, Unno N (2016) Hemodynamic Analysis of Endoleaks After Endovascular Abdominal Aortic Aneurysm Repair by Using 4-Dimensional Flow-Sensitive Magnetic Resonance Imaging. Circulation journal : official journal of the Japanese Circulation Society 80(8): 1715-1725. https://doi.org/10.1253/circj.CJ-16-0297

    Article  Google Scholar 

  107. Katahashi K, Sano M, Takehara Y, Inuzuka K, Sugiyama M, Alley MT, Takeuchi H, Unno N (2019) Flow dynamics of type II endoleaks can determine sac expansion after endovascular aneurysm repair using four-dimensional flow-sensitive magnetic resonance imaging analysis. Journal of vascular surgery 70(1): 107–116 e101. https://doi.org/10.1016/j.jvs.2018.09.048

  108. Salehi Ravesh M, Langguth P, Pfarr JA, Schupp J, Trentmann J, Koktzoglou I, Edelman RR, Graessner J, Greiser A, Hautemann D, Hennemuth A, Both M, Jansen O, Hovener JB, Schafer JP (2019) Non-contrast-enhanced magnetic resonance imaging for visualization and quantification of endovascular aortic prosthesis, their endoleaks and aneurysm sacs at 1.5T. Magn Reson Imaging 60: 164-172. https://doi.org/10.1016/j.mri.2019.05.012

    Article  PubMed  Google Scholar 

  109. Prince M, Tafur JD, White CJ (2019) When and How Should We Revascularize Patients With Atherosclerotic Renal Artery Stenosis? JACC Cardiovasc Interv 12(6): 505-517. https://doi.org/10.1016/j.jcin.2018.10.023

    Article  PubMed  Google Scholar 

  110. Klein AJ, Jaff MR, Gray BH, Aronow HD, Bersin RM, Diaz-Sandoval LJ, Dieter RS, Drachman DE, Feldman DN, Gigliotti OS, Gupta K, Parikh SA, Pinto DS, Shishehbor MH, White CJ (2017) SCAI appropriate use criteria for peripheral arterial interventions: An update. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions 90(4): E90-E110. https://doi.org/10.1002/ccd.27141

    Article  Google Scholar 

  111. Ishikawa T, Takehara Y, Yamashita S, Iwashima S, Sugiyama M, Wakayama T, Johnson K, Wieben O, Sakahara H, Ogata T (2015) Hemodynamic assessment in a child with renovascular hypertension using time-resolved three-dimensional cine phase-contrast MRI. J Magn Reson Imaging 41(1): 165-168. https://doi.org/10.1002/jmri.24522

    Article  PubMed  Google Scholar 

  112. Motoyama D, Ishii Y, Takehara Y, Sugiyama M, Yang W, Nasu H, Ushio T, Hirose Y, Ohishi N, Wakayama T, Kabasawa H, Johnson K, Wieben O, Sakahara H, Ozono S (2017) Four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction (4D PC-VIPR) MR evaluation of the renal arteries in transplant recipients: Preliminary results. J Magn Reson Imaging 46(2): 595-603. https://doi.org/10.1002/jmri.25607

    Article  PubMed  Google Scholar 

  113. Takayama T, Takehara Y, Sugiyama M, Sugiyama T, Ishii Y, Johnson KE, Wieben O, Wakayama T, Sakahara H, Ozono S (2014) Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report. BMC Res Notes 7(1): 527. https://doi.org/10.1186/1756-0500-7-527

    Article  PubMed  PubMed Central  Google Scholar 

  114. Terlouw LG, Moelker A, Abrahamsen J, Acosta S, Bakker OJ, Baumgartner I, Boyer L, Corcos O, van Dijk LJ, Duran M, Geelkerken RH, Illuminati G, Jackson RW, Karkkainen JM, Kolkman JJ, Lonn L, Mazzei MA, Nuzzo A, Pecoraro F, Raupach J, Verhagen HJ, Zech CJ, van Noord D, Bruno MJ (2020) European guidelines on chronic mesenteric ischaemia - joint United European Gastroenterology, European Association for Gastroenterology, Endoscopy and Nutrition, European Society of Gastrointestinal and Abdominal Radiology, Netherlands Association of Hepatogastroenterologists, Hellenic Society of Gastroenterology, Cardiovascular and Interventional Radiological Society of Europe, and Dutch Mesenteric Ischemia Study group clinical guidelines on the diagnosis and treatment of patients with chronic mesenteric ischaemia. United European Gastroenterol J 8(4): 371-395. https://doi.org/10.1177/2050640620916681

    Article  PubMed  PubMed Central  Google Scholar 

  115. van Petersen AS, Meerwaldt R, Kolkman JJ, Huisman AB, van der Palen J, van Bockel JH, Zeebregts CJ, Geelkerken RH (2013) The influence of respiration on criteria for transabdominal duplex examination of the splanchnic arteries in patients with suspected chronic splanchnic ischemia. Journal of vascular surgery 57(6): 1603-1611, 1611 e1601-1610. https://doi.org/10.1016/j.jvs.2012.11.120

  116. McKelvey A, Pateman K, Balchin I, Peebles DM, Rodeck CH, David AL (2017) Total uterine artery blood volume flow rate in nulliparous women is associated with birth weight and gestational age at delivery. Ultrasound Obstet Gynecol 49(1): 54-60. https://doi.org/10.1002/uog.15917

    Article  CAS  PubMed  Google Scholar 

  117. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL (2016) Association Between MRI Exposure During Pregnancy and Fetal and Childhood Outcomes. JAMA : the journal of the American Medical Association 316(9): 952-961. https://doi.org/10.1001/jama.2016.12126

    Article  PubMed  Google Scholar 

  118. Macdonald JA, Corrado PA, Nguyen SM, Johnson KM, Francois CJ, Magness RR, Shah DM, Golos TG, Wieben O (2019) Uteroplacental and Fetal 4D Flow MRI in the Pregnant Rhesus Macaque. J Magn Reson Imaging 49(2): 534-545. https://doi.org/10.1002/jmri.26206

    Article  PubMed  Google Scholar 

  119. Hwuang E, Vidorreta M, Schwartz N, Moon BF, Kochar K, Tisdall MD, Detre JA, Witschey WRT (2019) Assessment of uterine artery geometry and hemodynamics in human pregnancy with 4d flow MRI and its correlation with doppler ultrasound. J Magn Reson Imaging 49(1): 59-68. https://doi.org/10.1002/jmri.26229

    Article  PubMed  Google Scholar 

  120. Hwuang E, Wu PH, Rodriguez-Soto A, Langham M, Wehrli FW, Vidorreta M, Moon B, Kochar K, Parameshwaran S, Koelper N, Tisdall MD, Detre JA, Witschey W, Schwartz N (2020) Cross-modality and in-vivo validation of 4D flow MRI evaluation of uterine artery blood flow in human pregnancy. Ultrasound Obstet Gynecol n/a(n/a). https://doi.org/10.1002/uog.23112

  121. Corrado PA, Dinesh MS, Wieben O. 4D Flow MRI of the Uterine and Ovarian Vessels in the 2nd Trimester in Healthy Subjects. in Society of Magnetic Resonance Angiography (SMRA). 2018. Glasgow, Scotland.

Download references

Acknowledgements

The authors would like to thank Dr. Christopher Francois for providing us with images for Fig. 6 and Fig. 7.

Funding

This work was supported by the NIH (R01 DK096169, R01 DK125783, K24 DK102595). Dr. Oechtering receives funding from the German Research Foundation (OE 746/1-1). The authors acknowledge GE Healthcare who provides research support to the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Literature search and material collection were performed by THO and SBR. The first draft of the manuscript was written by THO and NP. All authors critically revised the manuscript and approved the final version.

Corresponding author

Correspondence to Thekla H. Oechtering.

Ethics declarations

Conflict of interest

No authors have any relevant conflicts. Unrelated to this work, Dr. Reeder has ownership interests in Calimetrix, Reveal Pharmaceuticals, Cellectar Biosciences, Elucent Medical and HeartVista.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oechtering, T.H., Roberts, G.S., Panagiotopoulos, N. et al. Abdominal applications of quantitative 4D flow MRI. Abdom Radiol 47, 3229–3250 (2022). https://doi.org/10.1007/s00261-021-03352-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03352-w

Keywords

Navigation