Skip to main content
Log in

Characterization of Abnormal Wall Shear Stress Using 4D Flow MRI in Human Bicuspid Aortopathy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There exists considerable controversy surrounding the timing and extent of aortic resection for patients with BAV disease. Since abnormal wall shear stress (WSS) is potentially associated with tissue remodeling in BAV-related aortopathy, we propose a methodology that creates patient-specific ‘heat maps’ of abnormal WSS, based on 4D flow MRI. The heat maps were created by detecting outlier measurements from a volumetric 3D map of ensemble-averaged WSS in healthy controls. 4D flow MRI was performed in 13 BAV patients, referred for aortic resection and 10 age-matched controls. Systolic WSS was calculated from this data, and an ensemble-average and standard deviation (SD) WSS map of the controls was created. Regions of the individual WSS maps of the BAV patients that showed a higher WSS than the mean + 1.96SD of the ensemble-average control WSS map were highlighted. Elevated WSS was found on the greater ascending aorta (35% ± 15 of the surface area), which correlated significantly with peak systolic velocity (R 2 = 0.5, p = 0.01) and showed good agreement with the resected aortic regions. This novel approach to characterize regional aortic WSS may allow clinicians to gain unique insights regarding the heterogeneous expression of aortopathy and may be leveraged to guide patient-specific resection strategies for aorta repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aicher, D., C. Urbich, A. Zeiher, S. Dimmeler, and H.-J. Schäfers. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann. Thoracic Surg. 83(4):1290–1294, 2007.

    Article  Google Scholar 

  2. Atkins, S., K. Cao, N. Rajamannan, and P. Sucosky. Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas. Biomech. Model. Mechanobiol. 2014. doi:10.1007/s10237-014-0567-7.

  3. Balistreri, C. R., C. Pisano, G. Candore, E. Maresi, M. Codispoti, and G. Ruvolo. Focus on the unique mechanisms involved in thoracic aortic aneurysm formation in bicuspid aortic valve versus tricuspid aortic valve patients: clinical implications of a pilot study. Eur. J. Cardiothorac. Surg. 43(6):e180–e186, 2013.

    Article  PubMed  Google Scholar 

  4. Barker, A. J., C. Lanning, and R. Shandas. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann. Biomed. Eng. 38(3):788–800, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Barker, A. J., M. Markl, J. Burk, R. Lorenz, J. Bock, S. Bauer, J. Schulz-Menger, and F. von Knobelsdorff-Brenkenhoff. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging 5(4):457–466, 2012.

    Article  PubMed  Google Scholar 

  6. Bieging, E. T., A. Frydrychowicz, A. Wentland, B. R. Landgraf, K. M. Johnson, O. Wieben, and C. J. Francois. In vivo three-dimensional MR wall shear stress estimation in ascending aortic dilatation. J. Magn. Reson. Imaging 33(3):589–597, 2011.

    Article  PubMed  Google Scholar 

  7. Bissell, M. M., A. T. Hess, L. Biasiolli, S. J. Glaze, M. Loudon, A. Pitcher, A. Davis, B. Prendergast, M. Markl, A. J. Barker, S. Neubauer, and S. G. Myerson. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ. Cardiovasc. Imaging 6(4):499–507, 2013.

    Article  PubMed  Google Scholar 

  8. Bock, J., W. Kreher, J. Hennig, and M. Markl. Optimized pre-processing of time-resolved 2D and 3D phase contrast MRI data. Proc. Int. Soc. Magn. Reson. Med. 15:3138, 2007.

    Google Scholar 

  9. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, and J. S. Shanewise. American College of Cardiology/American Heart Association Task Force on Practice G. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 52(13):e1–142, 2008.

    Article  PubMed  Google Scholar 

  10. Brown, A. G., Y. Shi, A. Marzo, C. Staicu, I. Valverde, P. Beerbaum, P. V. Lawford, and D. R. Hose. Accuracy vs. computational time: translating aortic simulations to the clinic. J. Biomech. 45(3):516–523, 2012.

    Article  PubMed  Google Scholar 

  11. Burk, J., P. Blanke, Z. Stankovic, A. Barker, M. Russe, J. Geiger, A. Frydrychowicz, M. Langer, and M. Markl. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 14:84, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Chandran, K. B., and S. C. Vigmostad. Patient-specific bicuspid valve dynamics: overview of methods and challenges. J. Biomech. 46(2):208–216, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cibis, M., W. V. Potters, F. J. Gijsen, H. Marquering, E. vanBavel, A. F. van der Steen, A. J. Nederveen, and J. J. Wentzel. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: a comparison study in healthy carotid arteries. NMR Biomed. 27(7):826–834, 2014.

    Article  PubMed  Google Scholar 

  14. Conti, C. A., A. Della Corte, E. Votta, L. Del Viscovo, C. Bancone, L. S. De Santo, and A. Redaelli. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J. Thorac. Cardiovasc. Surg. 140(4):890–896, 896 e891-892, 2010.

  15. de Sa, M., Y. Moshkovitz, J. Butany, and T. E. David. Histologic abnormalities of the ascending aorta and pulmonary trunk in patients with bicuspid aortic valve disease: clinical relevance to the ross procedure. J. Thorac. Cardiovasc. Surg. 118(4):588–594, 1999.

    Article  PubMed  Google Scholar 

  16. Della Corte, A., S. C. Body, A. M. Booher, H. J. Schaefers, R. K. Milewski, H. I. Michelena, A. Evangelista, P. Pibarot, P. Mathieu, G. Limongelli, P. S. Shekar, S. F. Aranki, A. Ballotta, G. Di Benedetto, N. Sakalihasan, G. Nappi, K. A. Eagle, J. E. Bavaria, A. Frigiola, and T. M. Sundt. On behalf of the International Bicuspid Aortic Valve Consortium I. Surgical treatment of bicuspid aortic valve disease. Knowledge gaps and research perspectives. J. Thorac. Cardiovasc. Surg. 2014. doi:10.1016/j.jtcvs.2014.01.021.

    Google Scholar 

  17. Entezari, P., A. Kino, A. R. Honarmand, M. S. Galizia, Y. Yang, J. Collins, V. Yaghmai, and J. C. Carr. Analysis of the thoracic aorta using a semi-automated post processing tool. Eur. J. Radiol. 82(9):1558–1564, 2013.

    Article  PubMed  Google Scholar 

  18. Entezari, P., S. Schnell, R. Mahadevia, C. Malaisrie, P. McCarthy, M. Mendelson, J. Collins, J. C. Carr, M. Markl, and A. J. Barker. From unicuspid to quadricuspid: Influence of aortic valve morphology on aortic three-dimensional hemodynamics. J. Magn. Reson. Imaging 2013. doi:10.1002/jmri.24498.

    PubMed  Google Scholar 

  19. Faggiano, E., L. Antiga, G. Puppini, A. Quarteroni, G. B. Luciani, and C. Vergara. Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve. Biomech. Model. Mechanobiol. 12(4):801–813, 2013.

    Article  PubMed  Google Scholar 

  20. Fazel, S. S., H. R. Mallidi, R. S. Lee, M. P. Sheehan, D. Liang, D. Fleischman, R. Herfkens, R. S. Mitchell, and D. C. Miller. The aortopathy of bicuspid aortic valve disease has distinctive patterns and usually involves the transverse aortic arch. J. Thorac. Cardiovasc. Surg. 135(4):901–907, 907 e901-902, 2008.

  21. Fedak, P. W. Bicuspid aortic valve syndrome: heterogeneous but predictable? Eur. Heart J. 29(4):432–433, 2008.

    Article  PubMed  Google Scholar 

  22. Fedak, P. W., and S. Verma. The molecular fingerprint of bicuspid aortopathy. J. Thorac. Cardiovasc. Surg. 145(5):1334, 2013.

    Article  PubMed  Google Scholar 

  23. Girdauskas, E., M. A. Borger, M. A. Secknus, G. Girdauskas, and T. Kuntze. Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Eur. J. Cardiothorac. Surg. 39(6):809–814, 2011.

    Article  PubMed  Google Scholar 

  24. Girdauskas, E., M. Rouman, K. Disha, T. Scholle, B. Fey, B. Theis, I. Petersen, M. A. Borger, and T. Kuntze. Correlation between systolic transvalvular flow and proximal aortic wall changes in bicuspid aortic valve stenosis. Eur. J. Cardiothorac. Surg. 2014. doi:10.1093/ejcts/ezt610.

    Google Scholar 

  25. Hiratzka, L. F., G. L. Bakris, J. A. Beckman, R. M. Bersin, V. F. Carr, D. E. Casey, Jr, K. A. Eagle, L. K. Hermann, E. M. Isselbacher, E. A. Kazerooni, N. T. Kouchoukos, B. W. Lytle, D. M. Milewicz, D. L. Reich, S. Sen, J. A. Shinn, L. G. Svensson, D. M. Williams, and American College of Cardiology Foundation/American Heart Association Task Force on Practice G; American Association for Thoracic S; American College of R; American Stroke A; Society of Cardiovascular A; Society for Cardiovascular A; Interventions, Society of Interventional R, Society of Thoracic S; Society for Vascular M. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J. Am. Coll. Cardiol. 55(14):e27–e129, 2010.

    Article  PubMed  Google Scholar 

  26. Hope, M. D., T. A. Hope, A. K. Meadows, K. G. Ordovas, T. H. Urbania, M. T. Alley, and C. B. Higgins. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255(1):53, 2010.

    Article  PubMed  Google Scholar 

  27. Hope, M. D., M. Sigovan, S. J. Wrenn, D. Saloner, and P. Dyverfeldt. MRI hemodynamic markers of progressive bicuspid aortic valve-related aortic disease. J. Magn. Reson. Imaging 2013. doi:10.1002/jmri.24362.

    PubMed Central  Google Scholar 

  28. Jenkinson, M., and S. Smith. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2):143–156, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Kang, J. W., H. G. Song, D. H. Yang, S. Baek, D. H. Kim, J. M. Song, D. H. Kang, T. H. Lim, and J. K. Song. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc. Imaging 6(2):150–161, 2013.

    Article  PubMed  Google Scholar 

  30. Keshavarz-Motamed, Z., J. Garcia, and L. Kadem. Fluid dynamics of coarctation of the aorta and effect of bicuspid aortic valve. PLoS ONE 8(8):e72394, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mahadevia, R., A. J. Barker, S. Schnell, P. Entezari, P. Kansal, P. W. Fedak, S. C. Malaisrie, P. McCarthy, J. Collins, J. Carr, and M. Markl. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129(6):673–682, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282(21):2035–2042, 1999.

    Article  CAS  Google Scholar 

  33. Markl, M., A. Harloff, T. A. Bley, M. Zaitsev, B. Jung, E. Weigang, M. Langer, J. Hennig, and A. Frydrychowicz. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J. Magn. Reson. Imaging 25(4):824–831, 2007.

    Article  PubMed  Google Scholar 

  34. Meierhofer, C., E. P. Schneider, C. Lyko, A. Hutter, S. Martinoff, M. Markl, A. Hager, J. Hess, H. Stern, and S. Fratz. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur. Heart J. Cardiovasc. Imaging 14(8):797–804, 2012.

    Article  PubMed  Google Scholar 

  35. Michelena, H. I., V. A. Desjardins, J. F. Avierinos, A. Russo, V. T. Nkomo, T. M. Sundt, P. A. Pellikka, A. J. Tajik, and M. Enriquez-Sarano. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation 117(21):2776–2784, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Michelena, H. I., A. D. Khanna, D. Mahoney, E. Margaryan, Y. Topilsky, R. M. Suri, B. Eidem, W. D. Edwards, T. M. Sundt, 3rd, and M. Enriquez-Sarano. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 306(10):1104–1112, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. Mohamed, S. A., F. Noack, K. Schoellermann, A. Karluss, A. Radtke, D. Schult-Badusche, P. W. Radke, B. E. Wenzel, and H. H. Sievers. Elevation of matrix metalloproteinases in different areas of ascending aortic aneurysms in patients with bicuspid and tricuspid aortic valves. Sci. World J. 2012. doi:10.1100/2012/806261.

    Google Scholar 

  38. Mohamed, S. A., A. Radtke, R. Saraei, J. Bullerdiek, H. Sorani, R. Nimzyk, A. Karluss, H. H. Sievers, and G. Belge. Locally different endothelial nitric oxide synthase protein levels in ascending aortic aneurysms of bicuspid and tricuspid aortic valve. Cardiol. Res. Pract. 2012. doi:10.1155/2012/165957.

    PubMed Central  PubMed  Google Scholar 

  39. Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46(1):102–109, 2013.

    Article  PubMed  Google Scholar 

  40. Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, 3rd, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, 3rd, and J. D. Thomas. AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014. doi:10.1016/j.jacc.2014.02.536.

    Google Scholar 

  41. Niwa, K., J. K. Perloff, S. M. Bhuta, H. Laks, D. C. Drinkwater, J. S. Child, and P. D. Miner. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation 103(3):393–400, 2001.

    Article  CAS  PubMed  Google Scholar 

  42. Potters, W., H. Marquering, E. VanBavel, and A. Nederveen. Measuring wall shear stress using velocity-encoded MRI. Curr. Cardiovasc. Imaging Rep. 7(4):1–12, 2014.

    Article  Google Scholar 

  43. Potters, W. V., P. van Ooij, H. A. Marquering, E. T. Van Bavel, and A. J. Nederveen. Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. JMRI 2013. doi:10.1002/jmri.24560.

    PubMed  Google Scholar 

  44. Roberts, C. S., and W. C. Roberts. Dissection of the aorta associated with congenital malformation of the aortic valve. J. Am. Coll. Cardiol. 17(3):712–716, 1991.

    Article  CAS  PubMed  Google Scholar 

  45. Stalder, A., M. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and M. Markl. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 60(5):1218–1231, 2008.

    Article  CAS  PubMed  Google Scholar 

  46. Strecker, C., A. Harloff, W. Wallis, and M. Markl. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J. Magn. Reson. Imaging 36(5):1097–1103, 2012.

    Article  PubMed  Google Scholar 

  47. Svensson, L. G., K.-H. Kim, E. H. Blackstone, J. Rajeswaran, A. M. Gillinov, T. Mihaljevic, B. P. Griffin, R. Grimm, W. J. Stewart, D. F. Hammer, and B. W. Lytle. Bicuspid aortic valve surgery with proactive ascending aorta repair. J. Thoracic Cardiovasc. Surg. 142(3):622–629.e623, 2011.

    Article  Google Scholar 

  48. Tzemos, N., E. Lyseggen, C. Silversides, M. Jamorski, J. H. Tong, P. Harvey, J. Floras, and S. Siu. Endothelial function, carotid-femoral stiffness, and plasma matrix metalloproteinase-2 in men with bicuspid aortic valve and dilated aorta. J. Am. Coll. Cardiol. 55(7):660–668, 2010.

    Article  CAS  PubMed  Google Scholar 

  49. Unser, M. Splines: a perfect fit for signal and image processing. Signal Process. Mag. IEEE 16(6):22–38, 1999.

    Article  Google Scholar 

  50. van Ooij, P., W. V. Potters, A. Guedon, J. J. Schneiders, H. A. Marquering, C. B. Majoie, E. Vanbavel, and A. J. Nederveen. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. J. Magn. Reson. Imaging 38(4):876–884, 2013.

    Article  PubMed  Google Scholar 

  51. van Ooij, P., W. V. Potters, A. J. Nederveen, B. D. Allen, J. Collins, J. Carr, S. C. Malaisrie, M. Markl, and A. J. Barker. A methodology to detect abnormal relative wall shear stress on the full surface of the thoracic aorta using 4D flow MRI. Magn. Reson. Med. 2014. doi:10.1002/mrm.25224.

    Google Scholar 

  52. Verma, S., and S. C. Siu. Aortic dilatation in patients with bicuspid aortic valve. N. Engl. J. Med. 370(20):1920–1929, 2014.

    Article  CAS  PubMed  Google Scholar 

  53. Verma, S., B. Yanagawa, S. Kalra, M. Ruel, M. D. Peterson, M. H. Yamashita, A. Fagan, M. E. Currie, C. W. White, S. L. Wai Sang, C. Rosu, S. Singh, H. Mewhort, N. Gupta, and P. W. M. Fedak. Knowledge, attitudes, and practice patterns in surgical management of bicuspid aortopathy: a survey of 100 cardiac surgeons. J. Thoracic Cardiovasc. Surg. 146(5):1033–1040.e1034, 2013.

    Article  Google Scholar 

  54. Viscardi, F., C. Vergara, L. Antiga, S. Merelli, A. Veneziani, G. Puppini, G. Faggian, A. Mazzucco, and G. B. Luciani. Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artif. Organs 34(12):1114–1120, 2010.

    Article  PubMed  Google Scholar 

  55. Ward, C. Clinical significance of the bicuspid aortic valve. Heart 83(1):81–85, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

NIH NHLBI Grant R01HL115828; American Heart Association Scientist Development Grant 13SDG14360004; Dutch Technology Foundation (STW) Carisma Grant 11629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim van Ooij.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ooij, P., Potters, W.V., Collins, J. et al. Characterization of Abnormal Wall Shear Stress Using 4D Flow MRI in Human Bicuspid Aortopathy. Ann Biomed Eng 43, 1385–1397 (2015). https://doi.org/10.1007/s10439-014-1092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1092-7

Keywords

Navigation