Skip to main content

Advertisement

Log in

Magnetic resonance imaging radiomic analysis can preoperatively predict G1 and G2/3 grades in patients with NF-pNETs

  • Pancreas
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to explore the relationship between the magnetic resonance imaging (MRI) radiomic score (rad-score) and the grades of non-functioning pancreatic neuroendocrine tumors (NF-pNETs) and evaluate the potential of the calculated MRI rad-score to differentiate grade 1 from grade 2/3 NF-pNETs.

Methods

This retrospective study assessed 157 patients with surgically resected, pathologically confirmed NF-pNETs who underwent magnetic resonance scans from November 2012 to December 2019. Radiomic features were extracted from arterial and portal venous MRI. The least absolute shrinkage and selection operator method were used to select the features. Multivariate logistic regression models were used to analyze the association between the MRI rad-score and NF-pNET grades. The MRI rad-score performance was assessed based on its discriminative ability and clinical usefulness.

Results

The MRI rad-score, which consisted of seven selected features, was significantly associated with the NF-pNET grades. Every 1-point increase in the rad-score was associated with a 35% increased risk of grade 2/3 disease. The score also showed high accuracy (area under the curve = 0.775). The best cut-off point for maximal sensitivity and specificity was at 0.41. In the decision curves, when the threshold probability was higher than 0.3, the rad-score used in this study to distinguish grades 1 and 2/3 NF-pNETs offered more benefits than the use of a treat-all-patients or a treat-none scheme.

Conclusions

The MRI rad-score showed a significant association with the grades of NF-pNETs. Thus, it may be used as a valuable non-invasive tool for differential NF-pNET grading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kloppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci 1014:13-27. https://doi.org/10.1196/annals.1294.002

    Article  PubMed  Google Scholar 

  2. Jensen RT, Cadiot G, Brandi ML, et al. (2012) ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology 95:98-119. https://doi.org/10.1159/000335591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sorbye H, Strosberg J, Baudin E, et al. (2014) Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer 120:2814-2823. https://doi.org/10.1002/cncr.28721

    Article  CAS  PubMed  Google Scholar 

  4. J AM, Masashi F, S KD, et al. (2019) WHO Classification of Tumours of the Digestive System, 5 edn. IARC Press, Lyon, France

    Google Scholar 

  5. Bosman FT CF, Hruban RH, Theise ND (2010) WHO Classification of Tumours of the Digestive System, 4 edn. IARC Press, Lyon, France

    Google Scholar 

  6. Sumiyoshi H, Matsushita A, Nakamura Y, et al. (2014) [Radical resection of a locally advanced pancreatic tail adenosquamous carcinoma treated with S-1 and gemcitabine as neoadjuvant chemotherapy - a case report]. Gan To Kagaku Ryoho 41:669–672.

  7. Inzani F, Petrone G, Rindi G (2018) The New World Health Organization Classification for Pancreatic Neuroendocrine Neoplasia. Endocrinol Metab Clin North Am 47:463-470. https://doi.org/10.1016/j.ecl.2018.04.008

    Article  PubMed  Google Scholar 

  8. Milione M, Maisonneuve P, Spada F, et al. (2017) The Clinicopathologic Heterogeneity of Grade 3 Gastroenteropancreatic Neuroendocrine Neoplasms: Morphological Differentiation and Proliferation Identify Different Prognostic Categories. Neuroendocrinology 104:85-93. https://doi.org/10.1159/000445165

    Article  CAS  PubMed  Google Scholar 

  9. Basturk O, Yang Z, Tang LH, et al. (2015) The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol 39:683-690. https://doi.org/10.1097/PAS.0000000000000408

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sorbye H, Welin S, Langer SW, et al. (2013) Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 24:152-160. https://doi.org/10.1093/annonc/mds276

    Article  CAS  PubMed  Google Scholar 

  11. Crippa S, Partelli S, Bassi C, et al. (2016) Long-term outcomes and prognostic factors in neuroendocrine carcinomas of the pancreas: Morphology matters. Surgery 159:862-871. https://doi.org/10.1016/j.surg.2015.09.012

    Article  PubMed  Google Scholar 

  12. Fazio N, Spada F, Giovannini M (2013) Chemotherapy in gastroenteropancreatic (GEP) neuroendocrine carcinomas (NEC): a critical view. Cancer Treat Rev 39:270-274. https://doi.org/10.1016/j.ctrv.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  13. Panzuto F, Boninsegna L, Fazio N, et al. (2011) Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J Clin Oncol 29:2372-2377. https://doi.org/10.1200/JCO.2010.33.0688

    Article  PubMed  Google Scholar 

  14. Yang G, Ji M, Chen J, et al. (2017) Surgery management for sporadic small (</=2 cm), non-functioning pancreatic neuroendocrine tumors: a consensus statement by the Chinese Study Group for Neuroendocrine Tumors (CSNET). Int J Oncol 50:567-574. https://doi.org/10.3892/ijo.2016.3826

    Article  PubMed  Google Scholar 

  15. Lambin P, Rios-Velazquez E, Leijenaar R, et al. (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441-446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar V, Gu Y, Basu S, et al. (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234-1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  17. Canellas R, Burk KS, Parakh A, et al. (2018) Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis. AJR Am J Roentgenol 210:341-346. https://doi.org/10.2214/AJR.17.18417

    Article  PubMed  Google Scholar 

  18. Choi TW, Kim JH, Yu MH, et al. (2018) Pancreatic neuroendocrine tumor: prediction of the tumor grade using CT findings and computerized texture analysis. Acta Radiol 59:383-392. https://doi.org/10.1177/0284185117725367

    Article  CAS  PubMed  Google Scholar 

  19. Gu D, Hu Y, Ding H, et al. (2019) CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur Radiol 29:6680-6890. https://doi.org/10.1007/s00330-019-06176-x

    Article  Google Scholar 

  20. Liang W, Yang P, Huang R, et al. (2019) A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors. Clin Cancer Res 25:584-594. https://doi.org/10.1158/1078-0432.CCR-18-1305

    Article  PubMed  Google Scholar 

  21. Gao X, Wang X (2019) Deep learning for World Health Organization grades of pancreatic neuroendocrine tumors on contrast-enhanced magnetic resonance images: a preliminary study. Int J Comput Assist Radiol Surg 14:1981-1991. https://doi.org/10.1007/s11548-019-02070-5

    Article  PubMed  Google Scholar 

  22. De Robertis R, Maris B, Cardobi N, et al. (2018) Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors? Eur Radiol 28:2582-2591. https://doi.org/10.1007/s00330-017-5236-7

    Article  PubMed  Google Scholar 

  23. Watanabe H, Okada M, Kaji Y, et al. (2009) New response evaluation criteria in solid tumours-revised RECIST guideline (version 1.1). Gan To Kagaku Ryoho 36:2495–2501. doi:

  24. Chalkidou A, O'Doherty MJ, Marsden PK (2015) False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PloS one 10:e0124165. https://doi.org/10.1371/journal.pone.0124165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lubner MG, Smith AD, Sandrasegaran K, et al. (2017) CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 37:1483-1503. https://doi.org/10.1148/rg.2017170056

    Article  PubMed  Google Scholar 

  26. Campbell F, Verbeke CS (2013) Pathology of the Pancreas: A Practical Approach. Springer-Verlag London, London

    Book  Google Scholar 

  27. Amin MB, Edge S, Greene F, et al. (2017) AJCC Cancer Staging Manual, 8 edn. Springer, New York

    Book  Google Scholar 

  28. Matsubayashi H, Matsui T, Yabuuchi Y, et al. (2016) Endoscopic ultrasonography guided-fine needle aspiration for the diagnosis of solid pancreaticobiliary lesions: Clinical aspects to improve the diagnosis. World J Gastroenterol 22:628-640. https://doi.org/10.3748/wjg.v22.i2.628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee YN, Moon JH, Kim HK, et al. (2014) A triple approach for diagnostic assessment of endoscopic ultrasound-guided fine needle aspiration in pancreatic solid masses and lymph nodes. Dig Dis Sci 59:2286-2293. https://doi.org/10.1007/s10620-014-3119-1

    Article  PubMed  Google Scholar 

  30. Wallace MB, Kennedy T, Durkalski V, et al. (2001) Randomized controlled trial of EUS-guided fine needle aspiration techniques for the detection of malignant lymphadenopathy. Gastrointest Endosc 54:441-447. https://doi.org/10.1067/mge.2001.117764

    Article  CAS  PubMed  Google Scholar 

  31. Yamada S, Fujii T, Suzuki K, et al. (2016) Preoperative Identification of a Prognostic Factor for Pancreatic Neuroendocrine Tumors Using Multiphase Contrast-Enhanced Computed Tomography. Pancreas 45:198-203. https://doi.org/10.1097/MPA.0000000000000443

    Article  PubMed  Google Scholar 

  32. 32Kim DW, Kim HJ, Kim KW, et al. (2016) Prognostic value of CT findings to predict survival outcomes in patients with pancreatic neuroendocrine neoplasms: a single institutional study of 161 patients. Eur Radiol 26:1320-1329. https://doi.org/10.1007/s00330-015-3943-5

    Article  PubMed  Google Scholar 

  33. 33Kim DW, Kim HJ, Kim KW, et al. (2015) Neuroendocrine neoplasms of the pancreas at dynamic enhanced CT: comparison between grade 3 neuroendocrine carcinoma and grade 1/2 neuroendocrine tumour. Eur Radiol 25:1375-1383. https://doi.org/10.1007/s00330-014-3532-z

    Article  PubMed  Google Scholar 

  34. 34Toshima F, Inoue D, Komori T, et al. (2017) Is the combination of MR and CT findings useful in determining the tumor grade of pancreatic neuroendocrine tumors? Jpn J Radiol 35:242-253. https://doi.org/10.1007/s11604-017-0627-x

    Article  CAS  PubMed  Google Scholar 

  35. 35Kulali F, Semiz-Oysu A, Demir M, et al. (2018) Role of diffusion-weighted MR imaging in predicting the grade of nonfunctional pancreatic neuroendocrine tumors. Diagn Interv Imaging 99:301-309. https://doi.org/10.1016/j.diii.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  36. 36Kim JH, Eun HW, Kim YJ, et al. (2013) Staging accuracy of MR for pancreatic neuroendocrine tumor and imaging findings according to the tumor grade. Abdom Imaging 38:1106-1114. https://doi.org/10.1007/s00261-013-0011-y

    Article  PubMed  Google Scholar 

  37. 37De Robertis R, Cingarlini S, Tinazzi Martini P, et al. (2017) Pancreatic neuroendocrine neoplasms: Magnetic resonance imaging features according to grade and stage. World J Gastroenterol 23:275-285. https://doi.org/10.3748/wjg.v23.i2.275

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38Moons KG, Altman DG, Reitsma JB, et al. (2015) Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 162:W1-73. https://doi.org/10.7326/M14-0698

    Article  PubMed  Google Scholar 

  39. 39Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 26:565-574. https://doi.org/10.1177/0272989X06295361

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Huiying Medical Technology (Beijing) Co., Ltd, Beijing, China

Funding

This work was supported in part by National Science Foundation for Scientists of China (81871352), National Science Foundation for Young Scientists of China (81701689, 81601468), 63-class General Financial Grant from the China Postdoctoral Science Foundation (2018M633714), Key Junior College of National Clinical of China, Shanghai Technology Innovation Project 2017 on Clinical Medicine (17411952200), and Project of Precision Medical Transformation Application of NMMU (2017JZ42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Li, J., Cao, K. et al. Magnetic resonance imaging radiomic analysis can preoperatively predict G1 and G2/3 grades in patients with NF-pNETs. Abdom Radiol 46, 667–680 (2021). https://doi.org/10.1007/s00261-020-02706-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02706-0

Keywords

Navigation