Skip to main content

Advertisement

Log in

Peribiliary glands: development, dysfunction, related conditions and imaging findings

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Peribiliary glands are minute structures that are distributed along the intrahepatic large bile ducts, extrahepatic bile duct, and cystic duct. These glands regulate many physiological functions, such as enzyme secretion. Pancreatic exocrine tissues and enzymes are often observed in peribiliary glands; thus, peribiliary glands are involved in enzyme secretion. As such, these glands can be affected by conditions such as IgG4-related sclerosing cholangitis based on commonalities with their pancreatic counterparts. Cystic changes in peribiliary glands can occur de novo, as part of a congenital syndrome, or secondary to insults such as alcoholic cirrhosis. Biliary tree stem/progenitor cells have recently been identified in peribiliary glands. These cells are involved in turnover and regeneration of biliary epithelia as well as in sclerosing reactions in some pathological conditions, such as primary sclerosing cholangitis and hepatolithiasis. Notably, hepatolithiasis is involved in mucin secretion by the peribiliary glands. Additionally, these cells are associated with the manifestation of several neoplasms, including intraductal papillary neoplasm, cystic micropapillary neoplasm, and cholangiocarcinoma. Normal peribiliary glands themselves are particularly small structures that cannot be recognized using any available imaging modalities; however, these glands are closely associated with several diseases, as mentioned above, which have typical imaging features. Therefore, knowledge of the basic pathophysiology of peribiliary glands is helpful for understanding biliary diseases associated with the peribiliary glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

These schemata were cited from Reference [33] (permission obtained)

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Carpino G, Renzi A, Franchitto A, Cardinale V, Onori P, Reid L, Alvaro D, Gaudio E. Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells Int 2016;2016:3658013. https://doi.org/10.1155/2016/3658013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakanuma Y, Katayanagi K, Terada T, Saito K. Intrahepatic peribiliary glands of humans. I. Anatomy, development and presumed functions. J Gastroenterol Hepatol 1994;9(1):75-79. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8155872. http://onlinelibrary.wiley.com/doi/10.1111/j.1440-1746.1994.tb01220.x/abstract.

  3. Nakanuma Y. A novel approach to biliary tract pathology based on similarities to pancreatic counterparts: is the biliary tract an incomplete pancreas? Pathol Int 2010;60(6):419-429. https://doi.org/10.1111/j.1440-1827.2010.02543.x

    Article  PubMed  Google Scholar 

  4. Ishida F, Terada T, Nakanuma Y. Histologic and scanning electron microscopic observations of intrahepatic peribiliary glands in normal human livers. Lab Invest 1989;60(2):260-265. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2915519.

  5. Sato H, Nakanuma Y, Kozaka K, Sato Y, Ikeda H. Spread of hilar cholangiocarcinomas via peribiliary gland network: a hither-to-unrecognized route of periductal infiltration. Int J Clin Exp Pathol 2013;6(2):318-322. https://www.ncbi.nlm.nih.gov/pubmed/23330019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544241/pdf/ijcep0006-0318.pdf.

  6. Cardinale V, Wang Y, Carpino G, Cui CB, Gatto M, Rossi M, Berloco PB, Cantafora A, Wauthier E, Furth ME, Inverardi L, Dominguez-Bendala J, Ricordi C, Gerber D, Gaudio E, Alvaro D, Reid L. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology 2011;54(6):2159-2172. https://doi.org/10.1002/hep.24590

    Article  CAS  PubMed  Google Scholar 

  7. Carpino G, Cardinale V, Renzi A, Hov JR, Berloco PB, Rossi M, Karlsen TH, Alvaro D, Gaudio E. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol 2015;63(5):1220-1228. https://doi.org/10.1016/j.jhep.2015.06.018

    Article  PubMed  Google Scholar 

  8. Terada T, Nakanuma Y. Immunohistochemical demonstration of pancreatic alpha-amylase and trypsin in intrahepatic bile ducts and peribiliary glands. Hepatology 1991;14(6):1129-1135. doi: S0270913991003130 [pii]

  9. Oikawa T. Cancer Stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology 2016;64(2):645-651. https://doi.org/10.1002/hep.28485

    Article  PubMed  Google Scholar 

  10. Terada T. Development of extrahepatic bile duct excluding gall bladder in human fetuses: histological, histochemical, and immunohistochemical analysis. Microsc Res Tech 2014;77(10):832-840. https://doi.org/10.1002/jemt.22406

    Article  CAS  PubMed  Google Scholar 

  11. Matsubara T, Sato Y, Igarashi S, Matsui O, Gabata T, Nakanuma Y. Alcohol-related injury to peribiliary glands is a cause of peribiliary cysts: based on analysis of clinical and autopsy cases. J Clin Gastroenterol 2014;48(2):153-159. https://doi.org/10.1097/mcg.0b013e318299c8c1

    Article  CAS  PubMed  Google Scholar 

  12. Nakanuma Y, Sasaki M, Terada T, Harada K. Intrahepatic peribiliary glands of humans. II. Pathological spectrum. J Gastroenterol Hepatol 1994;9(1):80-86. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8155873. http://onlinelibrary.wiley.com/doi/10.1111/j.1440-1746.1994.tb01221.x/abstract.

  13. Nakanuma Y. Peribiliary cysts have at least two different pathogeneses. J Gastroenterol 2004;39(4):407-408. https://doi.org/10.1007/s00535-004-1333-x

    Article  PubMed  Google Scholar 

  14. Kida T, Nakanuma Y, Terada T. Cystic dilatation of peribiliary glands in livers with adult polycystic disease and livers with solitary nonparasitic cysts: an autopsy study. Hepatology 1992;16(2):334-340. https://www.ncbi.nlm.nih.gov/pubmed/1639342. http://onlinelibrary.wiley.com/store/10.1002/hep.1840160209/asset/1840160209_ftp.pdf?v=1&t=j137gr6y&s=7ac85ef66834d7948b8e095a9f0cc0f1e8ad8fc3.

  15. Qian Q, Li A, King BF, Kamath PS, Lager DJ, Huston J, 3rd, Shub C, Davila S, Somlo S, Torres VE. Clinical profile of autosomal dominant polycystic liver disease. Hepatology 2003;37(1):164-171. https://doi.org/10.1053/jhep.2003.50006

    Article  PubMed  Google Scholar 

  16. Terayama N, Matsui O, Hoshiba K, Kadoya M, Yoshikawa J, Gabata T, Takashima T, Terada T, Nakanuma Y, Shinozaki K, et al. Peribiliary cysts in liver cirrhosis: US, CT, and MR findings. J Comput Assist Tomogr 1995;19(3):419-423. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7790552.

  17. Terada T, Minato H, Nakanuma Y, Shinozaki K, Kobayashi S, Matsui O. Ultrasound visualization of hepatic peribiliary cysts: a comparison with morphology. Am J Gastroenterol 1992;87(10):1499-1502. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1329497.

  18. Motoo Y, Yamaguchi Y, Watanabe H, Okai T, Sawabu N. Hepatic peribiliary cysts diagnosed by magnetic resonance cholangiography. J Gastroenterol 2001;36(4):271-275. https://www.ncbi.nlm.nih.gov/pubmed/11324732.

    Article  CAS  Google Scholar 

  19. Baron RL, Campbell WL, Dodd GD, 3rd. Peribiliary cysts associated with severe liver disease: imaging-pathologic correlation. AJR Am J Roentgenol 1994;162(3):631-636. https://doi.org/10.2214/ajr.162.3.8109511

    Article  CAS  PubMed  Google Scholar 

  20. Itai Y, Ebihara R, Eguchi N, Saida Y, Kurosaki Y, Minami M, Araki T. Hepatobiliary cysts in patients with autosomal dominant polycystic kidney disease: prevalence and CT findings. AJR Am J Roentgenol 1995;164(2):339-342. https://doi.org/10.2214/ajr.164.2.7839965

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka A. IgG4-Related Sclerosing Cholangitis and Primary Sclerosing Cholangitis. Gut and liver 2019;13(3):300-307. https://doi.org/10.5009/gnl18085

    Article  PubMed  Google Scholar 

  22. Ruemmele P, Hofstaedter F, Gelbmann CM. Secondary sclerosing cholangitis. Nature Reviews Gastroenterology and Hepatology 2009;6(5):287-295.

    Article  Google Scholar 

  23. Lazaridis KN, LaRusso NF. Primary Sclerosing Cholangitis. N Engl J Med 2016;375(12):1161-1170. https://doi.org/10.1056/nejmra1506330

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karlsen TH, Schrumpf E, Boberg KM. Primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 2010;24(5):655-666. https://doi.org/10.1016/j.bpg.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  25. BC P, Y N. Diseases of bile ducts. London: Churchill Livingstone, 2006: 517-581.

  26. Terasaki S, Nakanuma Y, Unoura M, Kaneko S, Kobayashi K. Involvement of peribiliary glands in primary sclerosing cholangitis: a histopathologic study. Intern Med 1997;36(11):766-770. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9392346. https://www.jstage.jst.go.jp/article/internalmedicine1992/36/11/36_11_766/_pdf.

  27. Zen Y, Quaglia A, Heaton N, Rela M, Portmann B. Two distinct pathways of carcinogenesis in primary sclerosing cholangitis. Histopathology 2011;59(6):1100-1110. https://doi.org/10.1111/j.1365-2559.2011.04048.x

    Article  PubMed  Google Scholar 

  28. Carpino G, Cardinale V, Renzi A, Hov JR, Berloco PB, Rossi M, Karlsen TH, Alvaro D, Gaudio E. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. Journal of hepatology 2015;63(5):1220-1228.

    Article  Google Scholar 

  29. Umehara H, Okazaki K, Masaki Y, Kawano M, Yamamoto M, Saeki T, Matsui S, Yoshino T, Nakamura S, Kawa S, Hamano H, Kamisawa T, Shimosegawa T, Shimatsu A, Nakamura S, Ito T, Notohara K, Sumida T, Tanaka Y, Mimori T, Chiba T, Mishima M, Hibi T, Tsubouchi H, Inui K, Ohara H. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod Rheumatol 2012;22(1):21-30. https://doi.org/10.1007/s10165-011-0571-z

    Article  CAS  PubMed  Google Scholar 

  30. Zen Y, Kawakami H, Kim JH. IgG4-related sclerosing cholangitis: all we need to know. J Gastroenterol 2016;51(4):295-312. https://doi.org/10.1007/s00535-016-1163-7

    Article  CAS  PubMed  Google Scholar 

  31. Inoue D, Yoshida K, Yoneda N, Ozaki K, Matsubara T, Nagai K, Okumura K, Toshima F, Toyama J, Minami T. IgG4-Related Disease: Dataset of 235 Consecutive Patients. Medicine 2015;94(15):e680.

    Article  CAS  Google Scholar 

  32. Majoie CB, Reeders JW, Sanders JB, Huibregtse K, Jansen PL. Primary sclerosing cholangitis: a modified classification of cholangiographic findings. AJR Am J Roentgenol 1991;157(3):495-497. https://doi.org/10.2214/ajr.157.3.1651643

    Article  CAS  PubMed  Google Scholar 

  33. Nakazawa T, Naitoh I, Hayashi K, Miyabe K, Simizu S, Joh T. Diagnosis of IgG4-related sclerosing cholangitis. World J Gastroenterol 2013;19(43):7661-7670. https://doi.org/10.3748/wjg.v19.i43.7661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chapman R, Fevery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B, Gores GJ, American Association for the Study of Liver D. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010;51(2):660-678. https://doi.org/10.1002/hep.23294

    Article  Google Scholar 

  35. Dave M, Elmunzer BJ, Dwamena BA, Higgins PD. Primary Sclerosing Cholangitis: Meta-Analysis of Diagnostic Performance of MR Cholangiopancreatography 1. Radiology 2010;256(2):387-396.

    Article  Google Scholar 

  36. Aabakken L, Karlsen TH, Albert J, Arvanitakis M, Chazouilleres O, Dumonceau J-m, Färkkilä M, Fickert P, Hirschfield GM, Laghi A. Clinical Practice Guidelines Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline q Clinical Practice Guidelines. 2017.

  37. Liver EAFTSOT. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. Journal of hepatology 2009;51(2):237-267.

  38. Tokala A, Khalili K, Menezes R, Hirschfield G, Jhaveri KS. Comparative MRI analysis of morphologic patterns of bile duct disease in IgG4-related systemic disease versus primary sclerosing cholangitis. AJR Am J Roentgenol 2014;202(3):536-543. https://doi.org/10.2214/ajr.12.10360

    Article  PubMed  Google Scholar 

  39. Kim JH, Byun JH, Kim SY, Lee SS, Kim HJ, Kim MH, Lee MG. Sclerosing cholangitis with autoimmune pancreatitis versus primary sclerosing cholangitis: comparison on endoscopic retrograde cholangiography, MR cholangiography, CT, and MRI. Acta Radiol 2013;54(6):601-607. https://doi.org/10.1177/0284185113481018

    Article  PubMed  Google Scholar 

  40. Zen Y, Sasaki M, Fujii T, Chen TC, Chen MF, Yeh TS, Jan YY, Huang SF, Nimura Y, Nakanuma Y. Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholangiocarcinogenesis from biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct--an immunohistochemical study of 110 cases of hepatolithiasis. J Hepatol 2006;44(2):350-358. https://doi.org/10.1016/j.jhep.2005.09.025

    Article  CAS  PubMed  Google Scholar 

  41. Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 2013;119(9):1669-1674. https://doi.org/10.1002/cncr.27955

    Article  CAS  PubMed  Google Scholar 

  42. Igarashi S, Sato Y, Ren XS, Harada K, Sasaki M, Nakanuma Y. Participation of peribiliary glands in biliary tract pathophysiologies. World J Hepatol 2013;5(8):425-432. https://doi.org/10.4254/wjh.v5.i8.425

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gabata T, Kadoya M, Matsui O, Kobayashi T, Sanada J, Mori A. Intrahepatic biliary calculi: correlation of unusual MR findings with pathologic findings. Abdom Imaging 2000;25(3):266-268. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10823448.

  44. Safar F, Kamura T, Okamuto K, Sasai K, Gejyo F. Magnetic resonance T1 gradient-echo imaging in hepatolithiasis. Abdom Imaging 2005;30(3):297-302. https://doi.org/10.1007/s00261-004-0262-8

    Article  CAS  PubMed  Google Scholar 

  45. Park HS, Lee JM, Kim SH, Jeong JY, Kim YJ, Lee KH, Choi SH, Han JK, Choi BI. CT Differentiation of cholangiocarcinoma from periductal fibrosis in patients with hepatolithiasis. AJR Am J Roentgenol 2006;187(2):445-453. doi: 187/2/445 [pii]. 10.2214/AJR.05.0247

  46. Chung YE, Kim MJ, Park YN, Lee YH, Choi JY. Staging of extrahepatic cholangiocarcinoma. Eur Radiol 2008;18(10):2182-2195. https://doi.org/10.1007/s00330-008-1006-x

    Article  PubMed  Google Scholar 

  47. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet 2005;366(9493):1303-1314. https://doi.org/10.1016/s0140-6736(05)67530-7

    Article  PubMed  Google Scholar 

  48. Nakagawa H, Hayata Y, Yamada T, Kawamura S, Suzuki N, Koike K. Peribiliary Glands as the Cellular Origin of Biliary Tract Cancer. International journal of molecular sciences 2018;19(6):1745.

    Article  Google Scholar 

  49. Nakanuma Y, Kakuda Y. Pathologic classification of cholangiocarcinoma: New concepts. Best Pract Res Clin Gastroenterol 2015;29(2):277-293. https://doi.org/10.1016/j.bpg.2015.02.006

    Article  PubMed  Google Scholar 

  50. Nakanuma Y, Miyata T, Uchida T. Latest advances in the pathological understanding of cholangiocarcinomas. Expert Rev Gastroenterol Hepatol 2016;10(1):113-127. https://doi.org/10.1586/17474124.2016.1104246

    Article  CAS  PubMed  Google Scholar 

  51. Nakanuma Y, Curado M-P, Franceschi S, Gores G, Paradis V, Sripa B, Tsui WMS, Wee A. Intrahepatic cholangiocarcinoma. 4 ed. Lyon: IARC, 2010: 217-224.

    Google Scholar 

  52. Zen Y, Adsay NV, Bardadin K, Colombari R, Ferrell L, Haga H, Hong S-M, Hytiroglou P, Klöppel G, Lauwers GY. Biliary intraepithelial neoplasia: an international interobserver agreement study and proposal for diagnostic criteria. Modern pathology 2007;20(6):701-709.

    Article  Google Scholar 

  53. Strobel O, Rosow DE, Rakhlin EY, Lauwers GY, Trainor AG, Alsina J, Fernandez-Del Castillo C, Warshaw AL, Thayer SP. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology 2010;138(3):1166-1177. https://doi.org/10.1053/j.gastro.2009.12.005

    Article  PubMed  Google Scholar 

  54. Yamaguchi J, Yokoyama Y, Kokuryo T, Ebata T, Nagino M. Cells of origin of pancreatic neoplasms. Surg Today 2017. https://doi.org/10.1007/s00595-017-1501-2

    Article  PubMed  Google Scholar 

  55. Nakanuma Y, Basturk O, Esposito I, Klimstra D, Komuta M, Zen Y. Intraductal papillary neoplasm of the bile ducts. In: Lokuhetty D, White V, Watanabe R, Cree I, eds. WHO classification of tumours Digestive System Tumours. 5 ed. Lyon: IARC, 2019; p. 279-282.

    Google Scholar 

  56. Zen Y, Fujii T, Itatsu K, Nakamura K, Konishi F, Masuda S, Mitsui T, Asada Y, Miura S, Miyayama S, Uehara T, Katsuyama T, Ohta T, Minato H, Nakanuma Y. Biliary cystic tumors with bile duct communication: a cystic variant of intraductal papillary neoplasm of the bile duct. Mod Pathol 2006;19(9):1243-1254. https://doi.org/10.1038/modpathol.3800643

    Article  PubMed  Google Scholar 

  57. Nakanishi Y, Nakanuma Y, Ohara M, Iwao T, Kimura N, Ishidate T, Kijima H. Intraductal papillary neoplasm arising from peribiliary glands connecting with the inferior branch of the bile duct of the anterior segment of the liver. Pathol Int 2011;61(12):773-777. https://doi.org/10.1111/j.1440-1827.2011.02738.x

    Article  PubMed  Google Scholar 

  58. Nakanuma Y, Sato Y. Cystic and papillary neoplasm involving peribiliary glands: a biliary counterpart of branch-type intraductal papillary mucinous [corrected] neoplasm? Hepatology 2012;55(6):2040-2041. https://doi.org/10.1002/hep.25590

    Article  PubMed  Google Scholar 

  59. Lim JH, Zen Y, Jang KT, Kim YK, Nakanuma Y. Cyst-forming intraductal papillary neoplasm of the bile ducts: description of imaging and pathologic aspects. AJR Am J Roentgenol 2011;197(5):1111-1120. https://doi.org/10.2214/ajr.10.6363

    Article  PubMed  Google Scholar 

  60. Sato Y, Harada K, Sasaki M, Nakanuma Y. Cystic and micropapillary epithelial changes of peribiliary glands might represent a precursor lesion of biliary epithelial neoplasms. Virchows Arch 2014;464(2):157-163. https://doi.org/10.1007/s00428-014-1537-2

    Article  CAS  PubMed  Google Scholar 

  61. Uchida T, Yamamoto Y, Ito T, Okamura Y, Sugiura T, Uesaka K, Nakanuma Y. Cystic micropapillary neoplasm of peribiliary glands with concomitant perihilar cholangiocarcinoma. World J Gastroenterol 2016;22(7):2391-2397. https://doi.org/10.3748/wjg.v22.i7.2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Katabathina VS, Flaherty EM, Dasyam AK, Menias CO, Riddle ND, Lath N, Kozaka K, Matsui O, Nakanuma Y, Prasad SR. “Biliary Diseases with Pancreatic Counterparts”: Cross-sectional Imaging Findings. Radiographics 2016;36(2):374-392. https://doi.org/10.1148/rg.2016150071

    Article  PubMed  Google Scholar 

  63. Nakanuma Y. Pre-invasive intraductal papillary neoplasm of the pancreatobiliary system. Clin Res Hepatol Gastroenterol 2016.

  64. Nakanuma Y. Pre-invasive intraductal papillary neoplasm of the pancreatobiliary system. Clin Res Hepatol Gastroenterol 2016;40(2):133-135. https://doi.org/10.1016/j.clinre.2015.12.005

    Article  PubMed  Google Scholar 

  65. Nakanuma Y, Harada K, Sasaki M, Sato Y. Proposal of a new disease concept “biliary diseases with pancreatic counterparts”. Anatomical and pathological bases. Histol Histopathol 2014;29(1):1-10. https://doi.org/10.14670/hh-29.1

    Article  PubMed  Google Scholar 

  66. Yamaguchi J, Mino-Kenudson M, Liss AS, Chowdhury S, Wang TC, Fernandez-Del Castillo C, Lillemoe KD, Warshaw AL, Thayer SP. Loss of Trefoil Factor 2 From Pancreatic Duct Glands Promotes Formation of Intraductal Papillary Mucinous Neoplasms in Mice. Gastroenterology 2016;151(6):1232-1244 e1210. https://doi.org/10.1053/j.gastro.2016.07.045

    Article  Google Scholar 

  67. Ayuso JR, Pages M, Darnell A. Imaging bile duct tumors: staging. Abdom Imaging 2013;38(5):1071-1081. https://doi.org/10.1007/s00261-013-0021-9

    Article  PubMed  Google Scholar 

  68. Yamada Y, Mori H, Hijiya N, Matsumoto S, Takaji R, Kiyonaga M, Ohta M, Kitano S, Moriyama M, Takaki H, Fukuzawa K, Yonemasu H. Extrahepatic bile duct cancer: invasion of the posterior hepatic plexuses--evaluation using multidetector CT. Radiology 2012;263(2):419-428. https://doi.org/10.1148/radiol.12111024

    Article  PubMed  Google Scholar 

  69. Ochotorena IJ, Kiyosue H, Hori Y, Yokoyama S, Yoshida T, Mori H. The local spread of lower bile duct cancer: evaluation by thin-section helical CT. Eur Radiol 2000;10(7):1106-1113. https://doi.org/10.1007/s003309900055

    Article  CAS  PubMed  Google Scholar 

  70. Takanami K, Yamada T, Tsuda M, Takase K, Ishida K, Nakamura Y, Kanno A, Shimosegawa T, Unno M, Takahashi S. Intraductal papillary mucininous neoplasm of the bile ducts: multimodality assessment with pathologic correlation. Abdom Imaging 2011;36(4):447-456. https://doi.org/10.1007/s00261-010-9649-x

    Article  PubMed  Google Scholar 

  71. Zen Y, Pedica F, Patcha VR, Capelli P, Zamboni G, Casaril A, Quaglia A, Nakanuma Y, Heaton N, Portmann B. Mucinous cystic neoplasms of the liver: a clinicopathological study and comparison with intraductal papillary neoplasms of the bile duct. Mod Pathol 2011;24(8):1079-1089. https://doi.org/10.1038/modpathol.2011.71

    Article  PubMed  Google Scholar 

  72. Ogawa H, Itoh S, Nagasaka T, Suzuki K, Ota T, Naganawa S. CT findings of intraductal papillary neoplasm of the bile duct: assessment with multiphase contrast-enhanced examination using multi-detector CT. Clin Radiol 2012;67(3):224-231. https://doi.org/10.1016/j.crad.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  73. Yoon HJ, Kim YK, Jang KT, Lee KT, Lee JK, Choi DW, Lim JH. Intraductal papillary neoplasm of the bile ducts: description of MRI and added value of diffusion-weighted MRI. Abdom Imaging 2013;38(5):1082-1090. https://doi.org/10.1007/s00261-013-9989-4

    Article  PubMed  Google Scholar 

  74. Kim JE, Lee JM, Kim SH, Baek JH, Moon SK, Yu IS, Kim SH, Lee JY, Han JK, Choi BI. Differentiation of intraductal growing-type cholangiocarcinomas from nodular-type cholangiocarcinomas at biliary MR imaging with MR cholangiography. Radiology 2010;257(2):364-372. https://doi.org/10.1148/radiol.10092105

    Article  PubMed  Google Scholar 

  75. Katabathina VS, Dasyam AK, Dasyam N, Hosseinzadeh K. Adult bile duct strictures: role of MR imaging and MR cholangiopancreatography in characterization. Radiographics 2014;34(3):565-586. https://doi.org/10.1148/rg.343125211

    Article  PubMed  Google Scholar 

  76. Kamisawa T, Nakazawa T, Tazuma S, Zen Y, Tanaka A, Ohara H, Muraki T, Inui K, Inoue D, Nishino TJJoHBPS. Clinical practice guidelines for IgG4-related sclerosing cholangitis. 2018.

  77. Harada K, Shimoda S, Kimura Y, Sato Y, Ikeda H, Igarashi S, Ren XS, Sato H, Nakanuma Y. Significance of IgG4-positive cells in extrahepatic cholangiocarcinoma: Molecular mechanism of IgG4 reaction in cancer tissue. Hepatology 2012. https://doi.org/10.1002/hep.25627

    Article  PubMed  Google Scholar 

  78. Yata M, Suzuki K, Furuhashi N, Kawakami K, Kawai Y, Naganawa S. Comparison of the multidetector-row computed tomography findings of IgG4-related sclerosing cholangitis and extrahepatic cholangiocarcinoma. Clin Radiol 2016;71(3):203-210. https://doi.org/10.1016/j.crad.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  79. Maeda E, Akahane M, Yoshioka N, Takao H, Matsuda I, Kamiya K, Hirano K, Tada M, Ohtsu H, Fukushima N, Ohtomo K. Comparison of CT findings of biliary tract changes with autoimmune pancreatitis and extrahepatic bile duct cholangiocarcinoma. Jpn J Radiol 2012;30(3):227-234. https://doi.org/10.1007/s11604-011-0035-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Angela Morben, DVM, ELS, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Kozaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, T., Kozaka, K., Matsui, O. et al. Peribiliary glands: development, dysfunction, related conditions and imaging findings. Abdom Radiol 45, 416–436 (2020). https://doi.org/10.1007/s00261-019-02298-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02298-4

Keywords

Navigation