Skip to main content

Advertisement

Log in

ImmunoPET imaging–based pharmacokinetic profiles of an antibody and its Fab targeting endothelin A receptors on glioblastoma stem cells in a preclinical orthotopic model

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

The resistance of glioblastoma stem cells (GSCs) to treatment is one of the causes of glioblastoma (GBM) recurrence. Endothelin A receptor (ETA) overexpression in GSCs constitutes an attractive biomarker for targeting this cell subpopulation, as illustrated by several clinical trials evaluating the therapeutic efficacy of endothelin receptor antagonists against GBM. In this context, we have designed an immunoPET radioligand combining the chimeric antibody targeting ETA, chimeric-Rendomab A63 (xiRA63), with 89Zr isotope and evaluated the abilities of xiRA63 and its Fab (ThioFab-xiRA63) to detect ETA+ tumors in a mouse model xenografted orthotopically with patient-derived Gli7 GSCs.

Results

Radioligands were intravenously injected and imaged over time by µPET-CT imaging. Tissue biodistribution and pharmacokinetic parameters were analyzed, highlighting the ability of [89Zr]Zr-xiRA63 to pass across the brain tumor barrier and achieve better tumor uptake than [89Zr]Zr-ThioFab-xiRA63.

Conclusions

This study shows the high potential of [89Zr]Zr-xiRA63 in specifically targeting ETA+ tumors, thus raising the possibility of detecting and treating ETA+ GSCs, which could improve the management of GBM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data generated and analyzed by the authors during the study are available in supplementary information. Complementary information are available from the corresponding author by request.

References

  1. Yang K, Wu Z, Zhang H, et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022;21:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodríguez-Camacho A, Flores-Vázquez JG, Moscardini-Martelli J, et al. Glioblastoma treatment: state-of-the-art and future perspectives. Int J Mol Sci. 2022;23:7207.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Noch EK, Ramakrishna R, Magge R. Challenges in the treatment of glioblastoma: multisystem mechanisms of therapeutic resistance. World Neurosurg. 2018;116:505–17.

    Article  PubMed  Google Scholar 

  4. Steponaitis G, Tamasauskas A. Mesenchymal and proneural subtypes of glioblastoma disclose branching based on GSC associated signature. Int J Mol Sci. 2021;22:4964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venkataramani V, Yang Y, Schubert MC, et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 2022;185:2899-2917.e31.

    Article  CAS  PubMed  Google Scholar 

  6. Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother. 2015;15:741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosanò L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2013;13:637–51.

    Article  PubMed  Google Scholar 

  8. Davenport AP, Kuc RE, Southan C, Maguire JJ. New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol Res. 2018;67(Suppl 1):S37-S54

  9. Vasaikar S, Tsipras G, Landázuri N, et al. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target? BMC Cancer. 2018;18:154.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Egidy G, Eberl LP, Valdenaire O, et al. The endothelin system in human glioblastoma. Lab Invest. 2000;80:1681–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sone M, Takahashi K, Totsune K, et al. Expression of endothelin-1 and endothelin receptors in cultured human glioblastoma cells. J Cardiovasc Pharmacol. 2000;36:S390.

    Article  CAS  PubMed  Google Scholar 

  12. Bowman RL, Wang Q, Carro A, Verhaak RGW, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol. 2017;19:139–41.

    Article  CAS  PubMed  Google Scholar 

  13. Weathers S-P, Rood-Breithaupt J, de Groot J, et al. Results of a phase I trial to assess the safety of macitentan in combination with temozolomide for the treatment of recurrent glioblastoma. Neuro-Oncol Adv. 2021;3:vdab141.

    Article  Google Scholar 

  14. Phuphanich S, Carson KA, Grossman SA, et al. Phase I safety study of escalating doses of atrasentan in adults with recurrent malignant glioma. Neuro Oncol. 2008;10:617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herbet A, Costa N, Leventoux N, et al. Antibodies targeting human endothelin-1 receptors reveal different conformational states in cancer cells. Physiol Res. 2018;67:S257–64.

    Article  CAS  PubMed  Google Scholar 

  16. Guichet P-O, Bieche I, Teigell M, et al. Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia. 2013;61:225–39.

    Article  PubMed  Google Scholar 

  17. Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002;30:E9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Herbet A, Costa N, Leventoux N, et al. Antibodies targeting human endothelin-1 receptors reveal different conformational states in cancer cells. Physiol Res. 2018;67(Suppl 1):S257-S264

  19. Bouleau A, Nozach H, Dubois S, et al. Optimizing immunoPET imaging of tumor PD-L1 expression: pharmacokinetics, biodistribution and dosimetric comparisons of 89Zr-labeled anti-PD-L1 antibody formats. J Nucl Med. 2021;63(8):1259-1265

  20. Bouleau A, Lebon V, Truillet C. PET imaging of immune checkpoint proteins in oncology. Pharmacol Ther. 2021;222: 107786.

    Article  CAS  PubMed  Google Scholar 

  21. Jauw YWS, O’Donoghue JA, Zijlstra JM, et al. 89Zr-Immuno-PET: toward a noninvasive clinical tool to measure target engagement of therapeutic antibodies in vivo. J Nucl Med. 2019;60:1825–32.

    Article  CAS  PubMed  Google Scholar 

  22. Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol. 2020;57:2461–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Razpotnik R, Novak N, Čurin Šerbec V, Rajcevic U. Targeting malignant brain tumors with antibodies. Front Immunol. 2017;8:1181.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15:455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kouhi A, Pachipulusu V, Kapenstein T, Hu P, Epstein AL, Khawli LA. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int J Mol Sci. 2021;22:6442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruiz-López E, Calatayud-Pérez J, Castells-Yus I, et al. Diagnosis of glioblastoma by immuno-positron emission tomography. Cancers. 2022;14:74.

    Article  Google Scholar 

  27. Lange F, Kaemmerer D, Behnke-Mursch J, Brück W, Schulz S, Lupp A. Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade I-IV astrocytic brain tumors. J Cancer Res Clin Oncol. 2018;144:1227–37.

    Article  CAS  PubMed  Google Scholar 

  28. Wijngaarden JE, Huisman MC, Pouw JEE, Menke-van der Houven van Oordt CW, Jauw YWS, Boellaard R. Optimal imaging time points considering accuracy and precision of Patlak linearization for 89Zr-immuno-PET: a simulation study. EJNMMI Res. 2022;12:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Céline Chevaleyre for her expertise on the pharmacokinetic model with Patlak and Benoit Jego for his support on ex vivo processing.

Funding

This work was funded by the ANR (ANR-19-CE18-0013, DualMab) and performed at an imaging platform supported by the France Life Imaging network (ANR-11-INBS-0006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Didier Boquet or Charles Truillet.

Ethics declarations

Ethical approval

All animal experiments were performed according to the European Directive 2010/63/EU and to its transposition into the French law (Decree No. 2013–118). This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

DB and AH are scientific cofounders and hold equity in Skymab Biotherapeutics.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Didier Boquet (Endothelin A receptor and antibodies) and Charles Truillet (ImmunoPET imaging and Pharmacokinetic)  are joint last authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5.48 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hautiere, M., Vivier, D., Pineau, D. et al. ImmunoPET imaging–based pharmacokinetic profiles of an antibody and its Fab targeting endothelin A receptors on glioblastoma stem cells in a preclinical orthotopic model. Eur J Nucl Med Mol Imaging 50, 3192–3201 (2023). https://doi.org/10.1007/s00259-023-06268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06268-3

Keywords

Navigation